
Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

Modifying Binaries: The Never Ending Program
by R4ndom on Jul.31, 2012, under Intermediate, Tutorials

Introduction

As an extension of my last modifying binaries tutorial on making programs non-closeable, I decided to take
it one step further. In this tutorial I will teach you how to trap when someone tries to close the program and
allow us to perform whatever code we want when this happens. This can come in handy if, for example,
you want to drive someone to be the best they can be by placing helpful message boxes for them every
time they try to close their word processor, such as “You don’t really think that paper is any good, do you?
Try again” and “I’m not letting you close this app until  you have really put some effort into this paper.”

In this tutorial the only tools you will need are OllyDBG (either the original version or my version on the
tools page) and a copy of the target, which can be downloaded with this tutorial on the tutorials page.

 

Investigating the App

The app I chose for this is one of the examples used in Petzold’s “Programming Windows” book- one of
the best books on programming windows there is (though it is a little dated). In it there is an example
program called “HexCalc” that is a poor man’s version of Windows Calc. Running the program, you can
see what I mean:

As you can see, it’s just a basic calculator for calculating in hex. Loading the app in Olly:

The Legend Of Random
Programming and Reverse Engineering

Login

 

 

 Remember me

Recover password

Recent Posts

Modifying Binaries: The Never Ending
Program

R4ndom’s Tutorial #16A: Dealing With
Windows Messages

A New Submission to the Site!

Double Whammy

R4ndom’s Tutorial #15: Using The Call
Stack

Recent Comments

Modifying Binaries: The Never Ending
Program « The Legend Of Random on
Tools

R4ndom on Modifying Binaries: Adding a
Menu Item

vy on Modifying Binaries: Adding a Menu
Item

Mr. eXoDia on R4ndom’s Tutorial #16A:
Dealing With Windows Messages

fishingmaster on R4ndom’s Tutorial #16A:
Dealing With Windows Messages

Archives

July 2012

June 2012

May 2012

Categories
Beginner

Intermediate

Random's Ramblings

Reverse Engineering

Tools

Tutorials

Uncategorized

Home Tutorials Tools Contact Forum

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/intermediate
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/139.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle



Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

For some reason Olly has decided to not analyze automatically. We can tell because the method calls and
arguments are not highlighted. If you have AnalyzeThis plugin, run that (you can download on the tools
page). Otherwise right-click in disassembly window and choose “Analyze” -> “Analyze code” and Olly will
clean it up a little:

That looks better. In this tutorial we will be switching back and forth between a lot of different address, so I
will use the bookmarks plugin to keep them straight. This plugin can also be downloaded on the tools
page. The first bookmark I will place is on the entry point as it is not at the start of the program:

RSS Feed

Meta

Register

Log in

Entries RSS

Comments RSS

WordPress.org

Subscribe

Enter your email to subscribe to future
updates

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/228.png
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/323.png
http://thelegendofrandom.com/blog/tools
Random
Rectangle



Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

and I will call it “Entry Point”:

Then, opening the bookmarks window I can see my bookmark (Plugins->Bookmarks->Bookmarks):

Now, our ultimate goal is to find the WndProc or DlgProc callback functions so that we can trap the
Windows message that tells the window to close and put our own code in it. If you haven’t, please look
over my modifying binaries tutorial “Making an App Non-Closeable” as it goes over finding these callback
procedures. Assuming you read that over (or have a basic understanding of how Windows creates
windows and dialog boxes) we can open the intermodular calls window (right-click -> Search for -> All
intermodular calls) and see whether this program uses a typical window or a dialog box as it’s main
screen:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/421.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/59.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/610.png


Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

We first look for RegisterClassA or RegisterClassExA, and if it’s there, as it is in this case, we can assume
that this app uses a window for its main screen as opposed to a dialog box.

*** If there was no RegisterClassA then we would look for DialogBoxParamA and go that way instead. ***

Double-clicking on RegisterClassA we come to the main call:

I have put a BP on the call just to highlight it. Now, you will recall from my other tutorial that when a
window is registered, the address for the message handler callback will be pushed onto the stack as one
of the arguments. To find this we go up a line or two and look for the ubiquitous PUSH EAX:

We then look at the value of EAX by highlighting that line and looking in the info window:

Here we can see that EAX is 12FED8. Looking over in the stack window under 12FED8 we see the
number 3 pushed, and under that is the callback address for the message handler:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/710.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/810.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/910.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1010.png


Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

So the main message handler is located at address 401280. Let’s go to that code:

Seeing the Switch (cases 2…111) is a dead giveaway that this is the message handler. I will go ahead and
set a bookmark here as well called “Message Handler”.

As a refresher, Windows will send every message through this callback, and our program can either decide
to act on it or send it on to Windows for Windows to handle it. The message we need to trap is the
WM_CLOSE message, or 0×10. You can look up all Windows messages and their hex values by
downloading my cheat sheet on the tools page under texts.

Let’s run the app and see this for ourselves. Remove any breakpoints and run the app in Olly. The main
HexCalc window will show up. Make sure that Olly (or any other window) is not covering up the HexCalc
screen or you won’t be able to send the proper messages in to Olly. Now place a BP at address 401292
as this is our first conditional jump:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1114.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1211.png
http://thelegendofrandom.com/blog/tools


Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

Olly will now pause when any messages from Windows comes through our handler. (You will notice that if
you move the mouse over the HexCalc window Olly will pause. This is because a mouse event has been
passed into the handler. If this happens, just F9 until  Olly is running again.)

Now, what we want to do is hover our mouse just outside the ‘X’ close button in the top right corner of
HexCalc (but not touching the HexCalc window) and then quickly click the ‘X’ button. The reason for this is
we want to minimize the number of messages that flow through the handler. Otherwise we’ll be going
through an awful lot until  Windows passes the WM_CLOSE message.

You won’t see the window close as Olly will pause immediately when the first message comes through
which will probably be a mouse event. So switch over to Olly and let’s see the messages come through
and what happens when they do:

Looking at the compares we can see that the windows message ID will be in EBX (this will not always be
the case). We can see that EBX contains 0×20:

Looking up hex 20 in our cheat sheet we can see that this is the windows message for
WM_SETCURSOR. Single stepping the code we see that this message is eventually given to
DefWindowProcA. This is the function to allow Windows to handle the message instead of our program
handling the message. We can also see that this is the default of the switch/case statement. This is
important because the message we want, WM_CLOSE, will also be passed back to Windows to handle.

Go ahead and hit F9 to see the next message come through:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1310.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/147.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/157.png


Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

and we can see that it also has an ID of 20. Now, you will F9 several times until  we get to the ID we want,
0×10. If you want, you can look up the various messages that come through in our cheat sheet. They will
be such things as WM_SETFOCUS, WM_MOUSEBUTTONDOWN etc. Keep pressing F9 until  EBX
contains 0×10:

These are the message IDs I went through to get to 0×10 (yours may be different): A0, 2A2, 21, 46, 1C,
86, 06, 281, 282, 07, 215, AE, 112.

OK, our WM_CLOSE message has come through. Now let’s single step and see what it does. First, it hits
the jump at address 4012AC and will jump.

If you watched the other messages come through here, you will have noticed that most (if not all)
messages jumped on this JNZ. This JNZ points to the default case of the switch/case statement, basically
the call to DefWindowProcA that tells Windows to handle this message for us. I am going to go ahead and
put a bookmark at address 4012AC called “Jump to Code Cave”:

After I place a bookmark at address 401347 called “Normal Message Return”, I now hit F9 a couple more
times and you will see the cleanup messages come through. These include 90, 46, 47, 281, 282,  2,  82.
The window will actually close when the 02 message comes through. This is the message for
WM_DESTROY. The app will then terminate.

 

Starting the Patch

Now let’s think about this. We know we need to trap the WM_CLOSE message with an ID of 0×10, but we
need to let all of the other messages come through, or else the app will not respond to anything. What
we’re going to have to do is add a compare in here somewhere that checks if EBX is equal to 0×10, and if
it is we perform our own code. If it isn’t, we just pass the message on like normal. This can be
accomplished by both a code cave or injected DLL, but in this case, as there is plenty of extra bytes, we
will use a code cave. I think in the next tutorial we will do this same thing but use a DLL instead, that way
we can compare the two  .

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/166.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/175.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/186.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/195.png


Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

So in effect, we need to make the JNZ instruction at address 4012AC jump to our own code. In our code
we will first compare EBX with 0×10. If it is not 0×10, we will jump to the place the JNZ would have
originally jumped, letting the message follow the normal flow it would have. If it is equal to 0×10, we will
send it to our own processing, where we can do whatever we want.

First we need to talk about ….

 

Creating A Code Cave

This app is pretty easy to find a suitable code cave; just scroll down toward the end of the section till we
see a bunch of zeroes:

So our code cave can start at address 403DBC. I will place a bookmark at the first zero at address
403DBC. My bookmarks window now looks like this:

This will help when I start jumping around  . Let’s go ahead and start coding our cave. The first thing I
want to do is copy EAX to ECX so I can modify it:

MOV ECX, EAX

I then want to clear everything but the lowest byte so that I can make ECX equal to the message ID only:

AND ECX, 0FF

When typing the’FF’ I must put the zero in front of it as Olly doesn’t like when you enter hex values that
start with a letter without the initial zero. What this statement does is clears everything in ECX except the
lowest byte to zero. So if EAX was FFFFEF10, meaning that AX held the ID of the WM_CLOSE message,
ECX would equal FFFFFF10, and after the AND statement ECX would equal 00000010. Now I want to
compare this ID with 0×10:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/205.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/273.png


Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

CMP ECX, 10

and if it’s not 10, we just want to jump where we  would have initially jumped. Looking up at address
4012AC, we can see that we would have jumped to 401347. This is the beginning of the DefWindowProcA
procedure. So add this jump:

JNZ 401347

So now every message that is not WM_CLOSE will go through normally, while the WM_CLOSE message
will fall through into whatever we do next. Let’s not do anything crazy yet, just to see if our code works.
We’ll just put a jump to the end of the DefWindowProcA routine to make sure our cave works. This will
basically make the close button do nothing if we click the ‘X’ in the title bar. The address we want to jump
to is 401359. This jumps to right after the call to DefWindowProcA. Here’s what our cave should look like
after entering the instructions:

And we need to go up and change the JNZ to automatically jump to our code cave at address 4012AC.
Just double-click on the bookmark “Jump to Code Cave” and we should land here:

Patching this jump to always jump to our code cave:

Gives us our new patch:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/229.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/235.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/282.png


Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

which jumps to our code cave:

 

Trying Out The First Patch

Let’s go ahead and try it. First, place a BP on our patched jump to the code cave at address 4012AC and
run the app. If you need to re-start the app first make sure you re-activate the patches:

and we can see that EBX contains the first message, in this case it is 0×24, or WM_GETMINMAXINFO.
Let’s single step past the jump and we arrive at the first instruction of our code cave:

Single step a couple more times and you will notice that, since this message is not 0×10, we will simply
jump back to where we originally would have jumped to, namely the DefWindowProcA procedure. Now
let’s test the close message. Remove the BP and run the app. Now place the BP back on at address
4012AC and do like you did before, quickly click the close button in the HexCalc app. Olly will break as
usual:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/292.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/263.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/3110.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/332.png


Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

Now, we must hit F9 several times, watching the EBX register. When EBX equals 0×10, we then single
step into our code cave. When we get to address x we can see that we are not taking the jump and
instead falling through to the next line:

Instead, we will jump back, but this time it will be after the call to DefWindoProcA:

Now remove the BP at 4012AC and hit F9 and see what happens…Nothing! The window did not close.
Go ahead and try and close the window- it won’t close. So our patch and cave work. Before we do
anything else, let’s save the changes. Right-click and choose “Copy to executable”. Select All
modifications. Right-click in this new window and select “Save file”. I saved it as HexCalc2.exe. Now load
this new file into Olly and we can do the second part of the patch.

 

Patching the Second Part

Now we want to do the fun stuff. Let’s make it so that every time the user clicks the close button, we
display a different message in a message box. After a certain amount of messages, we will finally let the
app finish. Here we can see our new code cave in Olly (after it has been saved to another file and re-
opened):

In order to accomplish this, what we will do is designate one of these addresses as a counter. Because
this memory is set to zero by default, we do not need to worry about setting it the first time through; it will
start as zero. We will create a set of if/then statements, comparing this memory location’s contents with a
number, and depending on the number, that will be the message we display. Then, we will increment this
counter so that the next time through it will select the next message. If the counter reaches a certain
number, we will then simply call the correct address, the DefWindowProcA, allowing the app to close. This

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/342.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/352.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/362.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/230.png


Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

is not the most efficient way of doing this, but it is easily explainiable. So here is what the code will
basically look like:

PUSH the style for Message box
PUSH the address of the title of the message box
if( counter == 0 )
  PUSH address of first message’s text
elseif (counter == 1 )
  PUSH the address of the 2nd message’s text
elseif (counter == 2 )
  PUSH the address of the 3rd message’s text
…
else
  jump to DefWindowProcA (fixing the stack before we jump) as we want to close the app now

PUSH the handle to the message  box (null)
call MessageBoxA
increment counter
jump to after the DefWindowProcA call to continue so the app doesn’t close

What this does is first pushes two of the four arguments onto the stack that we will need, the style and the
title (you can use the MessageBoxA call at address 401083 for reference on the arguments and the
address of the call). It then goes through selecting a message to display based on the value of our counter.
If we have reached the end, meaning we’re not going to show any more messages and just quit instead,
we need to remove those two argument we pushed to make the stack correct and then we jump out of this
section of code. If instead one of the messages is displayed, we push the address of the text for this
message (the third argument) and finally push the fourth argument, the handle to the window, which in this
case we will just make null as it does not have to have a parent. Lastly, we call MessageBoxA, increment
our counter for next time through, and jump back to the main code.

Here is the code assembled into the code cave (but before it is saved):



Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

There are a couple things to note here. The first is that the messages don’t look anything like text. That’s
because Olly does not know that they are ASCII strings yet. I simply highlighted a bunch of this memory,
chose “Binary”->”edit” and started typing in the ASCII section. When you run the app and it pushes the
address onto the stack, you will see the ASCII text representation, but until  then, it will look like gibberish.
Also, after you save it and reload it, you will see that it looks correct then because Olly will know that they
are text.

Second, I added some padding between the main program and the text messages- this is just in case I
screw up I can add an instruction later. I just put them in as NOPs starting at address 403E1C. I always do
this (if there’s room).

Third, you may wonder where I got the address for the counter (405FE0) and why I didn’t just use an
address in the code cave. The reason is the code cave is part of the code and it’s attributes are set as
executable, not writable. Therefore, I had to find a section of the binary that had writable access. Opening
the memory modules window we can see where the other global variables are kept (almost always in the
,data section):

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/612.png


Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

and we can see that data is stored starting at location 405000. I then scrolled down to the end of this
section and just chose a blank location, 405FE0 in this case.

Now when we run the app, our counter at address 405FE0 will be zero, so we will display message #0. We
will then increment this counter and return back to the main loop. Each time through, the counter will be
one more so we will show the next message. When the counter reaches 3, we will instead pop the two
arguments we pushed onto the stack and return to let windows end the app. Here’s what the message
boxes look like each time you press the close button:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1116.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/812.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/912.png


Modifying Binaries: The Never Ending Program « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1347[7/31/2012 10:20:09 AM]

No tags

and on the last close the app will actually close. Of course, if you’re evil, you could simply reset the counter
after 3 and show the same messages over and over again. The only way to shut the app would be to open
the task manager and kill the process  . Or you could put in a lot more messages and have a random
message shown only once every time the user quits. Really, the sky’s the limit.

 

-Now go have some fun.

R4ndom

Leave a Reply

 Name

 Mail (will not be published)

 Website

RSS feed for this post (comments)

· TrackBack URI

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1012.png
Random
Rectangle


	thelegendofrandom.com
	Modifying Binaries: The Never Ending Program « The Legend Of Random




