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In this tutorial we will be adding a new trick to our arsenal; what do you do if there are no usable string in

the binary to search for? We will also be introducing a new R.E.T.A.R.D. rule # In this tutorial (as well as
the next) we will be studying a crackme called Crackme6 by “TDC”, included in the download. Overall, it's

not a tough crackme, but we will be doing some advanced analysis on it, preparing for future tutorials. So

let's get started...

Go ahead and load Crackme6 into Olly:

Now, we know the routine; let's run the app and see what we got:
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ACCESS DENIED!

Pretty straight forward. So let’s go to our handy-dandy “search for Strings” and see what we got:
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What the hell!!! Those aren’t helpful g What are we supposed to do with those strings!?!? Obviously, this
crackme has encrypted the strings (either that or the author speaks a very strange language ;D ). Well, this
is a good time to introduce

Unfortunately, as soon as you start getting into real binaries (like commercial products) most will be
packed and/or protected in some way. One of the most obvious ways to hinder a reverse engineer is to
encrypt the strings. Frankly, when first investigating a new binary that | am interested in reverse
engineering, if | do a search for strings and any come up, | can assume that the binary will probably not
present too many challenges. So, you cannot rely on there being any (though it's great when there are

In light of this, I will show you a new trick in the case of no strings; most Windows applications use a
standard set of APIs to perform specific actions. For example, MessageBoxA is called if a simple message
box is desired, or TerminateProcess is called when the app wishes to end. Since most apps use these
same APIs, we can use this to our benefit. For example, there are APIs for getting text from a dialog input
box (like a username and serial number). There are APIs for setting timers (used in nag screens where
you must wait 10 seconds before hitting ‘continue’). There are string compare functions that are called to
compare two strings (was the entered password the same as the one stored in the program?). And there
are APIs for reading and writing to the registry (to store and retrieve your registration status).

Olly has a way of searching for all of these called APIs. Right click in the disassembly window and choose
“Search for” -> “All intermodular calls”:
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The first thing | usually do is click on the “Destination” heading to sort the list of functions in alphabetical
order (instead of by address):
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@ Found intermodular calls

This is a small program, so there are not that many. Most programs will have hundreds. But in this list you
can tell a lot about a binary. You can tell it uses a dialog box as it's main window. You can tell it loads a
custom bitmap. And you can tell that it changes some colors in the dialog box.

In a larger application, this window becomes even more invaluable, as it will tell you things such as 1) Are
registry APIs called to store and retrieve info from the registry? 2) Are there APIs calling websites to verify
that we are actually registered? 3) Are there reading and writing to files APIs where perhaps a registration
key will be stored? And when we get into packed binaries, this screen will become even more important
(but that's later B )

All that being said, there are some specific APIs that reverse engineers are always looking out for, APIs
that are used in protection schemes a lot. These include:

DialogBoxParamA
GetDlIgltem
GetDlgltemInt
GetDIgTextA
GetWindowTextA
GetWindowWord

LoadStringA
IstrcmpA

wsprintfA

MessageBeep
MessageBoxA
MessageBoxExA
SendMessageA
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Unfortunately, this does not cover all of the API calls you may run into, but fortunately, most apps use one
of the following:

So if you focus on these 8 API calls, you will be able to handle the vast majority of instances. And don’t
forget, you always have Olly to help with “Get help on symbolic name”.

Now, when you look down the list in the calls that Olly has found in our crackme, there are two that are in
our short list:

GetDlgltem and GetDIlgltemTextA.

What these two API calls do is retrieve whatever text was entered into a dialog box (well, for our tutorial,
anyway &8 ). Well, in our crackme, this could only mean one thing, our entered password. What we want
to do is tell Olly to break anytime he comes across one of these calls. The way to do that is to select the
line that has the call you want, right click and select “Set breakpoint on every callto ", Where _____
will be the name of the API (in this case GetDlgltem):

Toggle breakpoint
nditicnal breakpoint Shift+F2

Conditional leg breakp Shift+F4

Help on GetDlghtem Ctrl+F1

-—

to clipboard
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Now, we can see that Olly has placed a BP on this line.
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We also want to break on the other API call, GetDIgltemTextA, so click on that one, right-click and do the
same:
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Now, anytime Olly comes across one of these two calls, he will break (before the call is made). So let's try
it. Re-start the crackme and run it. Olly will break on a call to GetDIgltem:

Now, since we have not entered anything yet, we're not really interested in what GetDIgltem has gotten in
this case, so let's keep going (F9):
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Now enter a password and click “check”:
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If you look around a little, you'll see that we're in the right place @4 Funny, none of those strings were there
when we initially searched for them i@y

Let’s take a quick look around... We see a jump (JB) past the first “ACCESS DENIED”, so we'll have to
pay attention to that:
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Then there’s a jump (JNZ) past the second bad boy, so we’ll add that to the list. Then we would fall
through to the good boy, so basically we want to make sure we jump both of those jumps:

Let’s try it and see if we're right. Run the app again and we should break at our GetDIgltemTextA
instruction (remember to bypass the firs break).

DEMIED®™
4 (o

So that will force the jump. Now we're going to do another TEST and stop at the jump at address 401280.
Notice that our password has shown up in the comments column &

Edit",pa:

This jump we want to take as it jumps the second bad boy, so just keep stepping until we get to the next
JNZ instruction at 40129F:
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OK, this is now going to jump past our good messages, so we want to stop that from happening. You know
what to do:

For a challenge, try patching this crackme yourself, based on the flags we have changed. After saving he
patched program, you should be able to run it and enter any password (less than 11 digits) and it will say
“Access Granted”. Keep in mind that there are several patches that can be done to accomplish this, so if
one doesn’t work, keep looking.

Extra Credit: Patch the crackme so that your password can be any length.

-Till next time

R4ndom

ps. You can get a homework hint

pps. | will post the solution in a couple days.
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