The Legend Of Random

Programming and Reverse Engineering

Home Tutorials Tools Contact

R4ndom’s Tutorial #9: No Strings Attached

R4ndom Beginner, Reverse Engineering, Tutorials

In this tutorial we will be adding a new trick to our arsenal; what do you do if there are no usable string in

the binary to search for? We will also be introducing a new R.E.T.A.R.D. rule # In this tutorial (as well as
the next) we will be studying a crackme called Crackme6 by “TDC”, included in the download. Overall, it's

not a tough crackme, but we will be doing some advanced analysis on it, preparing for future tutorials. So

let's get started...

Go ahead and load Crackme6 into Olly:

Now, we know the routine; let's run the app and see what we got:

TOE Ewmyped R Eedmn (54
rpviese |

m e Peesryen:] G 5] |
ACCESS DENIED!

Pretty straight forward. So let’s go to our handy-dandy “search for Strings” and see what we got:

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/115.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/46.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/55.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
Random
Rectangle

v in Dump

w call tree Ctrl+K

Search for Mame (label) in current r ule Ctrl+N

Find references to Mame in all modules

View

View -
Ctrl+F

recutable LT
mmands Ctrl+S

slic name Ctrl+F1 Ctrl+B

All referenced text strings
User-defined label

Script(5)

Script Functi

IE Text strings referenced in Crackmef: text
Add. Di

IXIIIIIIIIIIIL[

What the hell!!! Those aren’t helpful g What are we supposed to do with those strings!?!? Obviously, this
crackme has encrypted the strings (either that or the author speaks a very strange language ;D). Well, this
is a good time to introduce

Unfortunately, as soon as you start getting into real binaries (like commercial products) most will be
packed and/or protected in some way. One of the most obvious ways to hinder a reverse engineer is to
encrypt the strings. Frankly, when first investigating a new binary that | am interested in reverse
engineering, if | do a search for strings and any come up, | can assume that the binary will probably not
present too many challenges. So, you cannot rely on there being any (though it's great when there are

In light of this, I will show you a new trick in the case of no strings; most Windows applications use a
standard set of APIs to perform specific actions. For example, MessageBoxA is called if a simple message
box is desired, or TerminateProcess is called when the app wishes to end. Since most apps use these
same APIs, we can use this to our benefit. For example, there are APIs for getting text from a dialog input
box (like a username and serial number). There are APIs for setting timers (used in nag screens where
you must wait 10 seconds before hitting ‘continue’). There are string compare functions that are called to
compare two strings (was the entered password the same as the one stored in the program?). And there
are APIs for reading and writing to the registry (to store and retrieve your registration status).

Olly has a way of searching for all of these called APIs. Right click in the disassembly window and choose
“Search for” -> “All intermodular calls”:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/216.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/39.png
Random
Rectangle

Follow
Goto
Follow in Dump

View call tree

Search for

Find references to
View

Copy to executable
Analysis

Help on symbolic name Ctrl+F1

Detach Process

Process Patcher
Analyze This!

Bookmark

Code Ripper
IDAFicator
FCALL

Script(5)

Found intermedular calls

Address

Dizaszembly

LoadBitmaph

LFaram = FE1433588
WParam = @

Mez=zzge = BM_SETIMAGE
ControllD = 68 (184.)

F+21]
dD laltentessager

hlind = FEFODEGEE
SendDlaltemilessaasr

RercHame = 21.
2E7C] [hInst = MULL

dE i tmapH >

LoadBitmapH

rlFaram = 75143388

Marme (label) in current module

Mame in all medules

Command
Sequence of commands
Constant

Binary string

All intermoedular calls

All cornmands

All sequences

All constants

All switches

All referenced text strings

User-defined label

User-defined comment

Ctrl+MN

Ctrl+F
Ctrl+5

Ctrl+B

-—

Destinat ion

B4R 1 GEE
BE4E1GET
aa4a1622
Ba481625
Ba481645
Ba481652
BE4E81 0664
BE4E1671
Ba481653
BE4E81636
BE4E1GA2
BE4E1 GAF
41 GEF
BE4E1 G0
Ba4E16ER
Ba4a1 18E
@a4a1120
ea481137
ea4a1141
Ba48114A
BE4E81 154
Ba4E1 173
BE4E1 138
BE4E112A
BE4E11A1
BE4E1 182
BE4E11E1
Ba4E1242
Ba4a1 264
Ba4a1279
@a4a1220
Ba4a12AC
Ba4a1 289
Be46812CE
BE4E812F5
BE4E81 387
BE4E1 326
BE4E1323
BE4E1 345
EE4E1 350
BE4E1370
Ba4a1 386
Ba4A1 396
BE4a1399
Ba4813A3
Ba4813BF
Be4E81 300
BE4E81 306
Ba4E813ER
BE4E813FE
BE4E1416

< &oomct 132, In it CommonCon
- Akernel32. GetModu leHang
Ruser32.0ialogBorParanmf
Sdkernel32.ExitProcess:
S huserd2. SetllindowTentA
s duserdz2. LoadBitmapA
LhuzerdZ. SendDlalteniesy
S duserd2. LoadBitmapH
LhuserdZ. SendDlaltemtesy
tuserdd.LoadBitmnaph X
Auser32. SendDlgltemMesy
- duser32. LoadlconA:
«Ruser32. SendHMessageA>
Ruser32.GetDlaltens
S huserdz, SetllindowTentA
&adi32.CreateSol idBrush
&adid2.SetTentColor>
.%adi32. SetBkMode >
- %adiZ2. CreatreSol idErush
.%adiZ2. SetBkColor:
- %adi22. CreateSol idBrush
. %odiZZ. SetTentColor
%adi3Z. SetBkColor:>
MP.2%3di32. CreateSol idBrush
«&user32.Re leaseCapture
«Auser32,. SendMessaged >
Ruser32.0ialogBoxParamf
S Auserd2. SetllindowTentA
Ruser32.GetDlaltenTestR
Shuserd2. SetlindowTentH
S huserd2. SetlindowTentH
Shuserd2. SetlindowTentA
Shuserd2.Enablellindows
Shuserd2. SetlindowTentH
SGuserZZ.EndDialogr
tuserdz.EndDialogr>
Luserd2. SetllindowTesth
MP. &user32. LoadBitmapA>
Auser32. SendDlgltemMesy
&adi32.CreateSol idBrush
Jkadiz2.SetTentColor>
. %adi32. SetBkMode
&adi32.CreateSol idBrush
.&adi32.SetBkColor >
- %adiZ2. CreatreSol idBrush
S%adiZ2. SetTentColor
. %adiZ2. SetBkColor>
.%adi32. CreateSol idErush
. huserdz.ReleaseCapture
<P kuserd2. Sendlessagef:
<dMPLGuser32.EndDialogl

[Initial CPU selectionl
kerne 32, GetModu LeHand LeR
uzer32.0ialogBosFararmA
kernel22.En itProcess
userZZ. SetllindowTerth
uzerZZ. LoadBitmaph
uzerzZ. SendDlaltenMessaaeA
uzerZZ. LoadBitmapH
uzerszZ. SendDlaltemtessaged
userzZ.LoadBitmaph
user22, SendldlgltemnMessager
user3Z. LoadloonA
uzersZ. SendMessagef
uzer2Z. GetDlaltem
uzerZZ. SetllindowTertA
adizz.CreateSol idBrush
adizz.SetTextColor
adiZz. SetBkMods
iZ22.CreateSol idBrush
.SetBkColor
.CreateSolidBrush
122, 8etTentColor
adiZz.SetBkColor
gdi2Z. CreateSol idBrush
user22.ReleaseCapture
user22, SendMessaasH
uzer2Z2.0ialogBosFaramA
uzerZZ. Setll indowTertA
uzer32. GetDlaltemTextA
uzerZZ. SetllindowTexth
userZZ. SetllindowTenth
uzerZZ. SetllindowTenth
uzerZZ.Enablell indow
userZZ. SetllindowTerth
uzerZZ.EndDialog
userZZ.EndDialog
userzZ. SetllindowTesth
user22, LoadBitmapA
user22, SendllgltemMessager
adizZ.CreateSol idBrush
adizz.SetTextColor
adizz.SetBkMade
adizz.CreateSol idBrush
adizz.SetBkColor
adiZz.CreateSol idBrush
gdiZz.SetTentColor
adizZz.SetBkColor
gdiZZ.CreateSol idBrush
uzerzzZ. ReleaseCapture
userzz. Sendiessaged
user22.EndDialog

The first thing | usually do is click on the “Destination” heading to sort the list of functions in alphabetical
order (instead of by address):

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/64.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/74.png

@ Found intermodular calls

This is a small program, so there are not that many. Most programs will have hundreds. But in this list you
can tell a lot about a binary. You can tell it uses a dialog box as it's main window. You can tell it loads a
custom bitmap. And you can tell that it changes some colors in the dialog box.

In a larger application, this window becomes even more invaluable, as it will tell you things such as 1) Are
registry APIs called to store and retrieve info from the registry? 2) Are there APIs calling websites to verify
that we are actually registered? 3) Are there reading and writing to files APIs where perhaps a registration
key will be stored? And when we get into packed binaries, this screen will become even more important
(but that's later B)

All that being said, there are some specific APIs that reverse engineers are always looking out for, APIs
that are used in protection schemes a lot. These include:

DialogBoxParamA
GetDlIgltem
GetDlgltemInt
GetDIgTextA
GetWindowTextA
GetWindowWord

LoadStringA
IstrcmpA

wsprintfA

MessageBeep
MessageBoxA
MessageBoxExA
SendMessageA

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/84.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/94.png

SendDlgltemMessageA

ReadFile
WriteFile
CreateFileA

GetPrivateProfileIntA
WritePrivateProfileStringA
GetPrivateProfileStringA

Unfortunately, this does not cover all of the API calls you may run into, but fortunately, most apps use one
of the following:

So if you focus on these 8 API calls, you will be able to handle the vast majority of instances. And don’t
forget, you always have Olly to help with “Get help on symbolic name”.

Now, when you look down the list in the calls that Olly has found in our crackme, there are two that are in
our short list:

GetDlgltem and GetDIlgltemTextA.

What these two API calls do is retrieve whatever text was entered into a dialog box (well, for our tutorial,
anyway &8). Well, in our crackme, this could only mean one thing, our entered password. What we want
to do is tell Olly to break anytime he comes across one of these calls. The way to do that is to select the
line that has the call you want, right click and select “Set breakpoint on every callto ", Where _____
will be the name of the API (in this case GetDlgltem):

Toggle breakpoint
nditicnal breakpoint Shift+F2

Conditional leg breakp Shift+F4

Help on GetDlghtem Ctrl+F1

-—

to clipboard
Sort by

Appearance

Now, we can see that Olly has placed a BP on this line.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/104.png

@ Found intermedular calls
: bl

We also want to break on the other API call, GetDIgltemTextA, so click on that one, right-click and do the
same:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/116.png

@ Found intermedular calls
: bl

Now, anytime Olly comes across one of these two calls, he will break (before the call is made). So let's try
it. Re-start the crackme and run it. Olly will break on a call to GetDIgltem:

Now, since we have not entered anything yet, we're not really interested in what GetDIgltem has gotten in
this case, so let's keep going (F9):

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/123.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/134.png

(window)

AREMT
(windowl

Now enter a password and click “check”:

m Emyptal e G 5

If you look around a little, you'll see that we're in the right place @4 Funny, none of those strings were there
when we initially searched for them i@y

Let’s take a quick look around... We see a jump (JB) past the first “ACCESS DENIED”, so we'll have to
pay attention to that:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/144.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/153.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/164.png

TOC Cwdl®,

"Edit",p
F
DEMIED®™

Then there’s a jump (JNZ) past the second bad boy, so we’ll add that to the list. Then we would fall
through to the good boy, so basically we want to make sure we jump both of those jumps:

Let’s try it and see if we're right. Run the app again and we should break at our GetDIgltemTextA
instruction (remember to bypass the firs break).

DEMIED®™
4 (o

So that will force the jump. Now we're going to do another TEST and stop at the jump at address 401280.
Notice that our password has shown up in the comments column &

Edit",pa:

This jump we want to take as it jumps the second bad boy, so just keep stepping until we get to the next
JNZ instruction at 40129F:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/174.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/184.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/194.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/205.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/217.png

DEHIED®™

OK, this is now going to jump past our good messages, so we want to stop that from happening. You know
what to do:

For a challenge, try patching this crackme yourself, based on the flags we have changed. After saving he
patched program, you should be able to run it and enter any password (less than 11 digits) and it will say
“Access Granted”. Keep in mind that there are several patches that can be done to accomplish this, so if
one doesn’t work, keep looking.

Extra Credit: Patch the crackme so that your password can be any length.

-Till next time

R4ndom

ps. You can get a homework hint

pps. | will post the solution in a couple days.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/225.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/235.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/245.png
http://thelegendofrandom.com/blog/hint9.html
Random
Rectangle

