The Legend Of Random

Programming and Reverse Engineering

Home Tutorials Tools Contact

Tutorial #5: Our First (Sort Of) Crack

R4ndom Reverse Engineering, Tutorials

In this tutorial we will be finishing up some last minute Olly things as we review a crackme. Well, sort of a
crackme. It's really just the program we used before but changed to ask for a serial number and displays
either a good message if you get the serial right, or bad message if you get it wrong. | chose to do it this
way, as opposed to jumping into a completely different crackme, because | want you to be able to focus on
the serial checking routine, and not get bogged down in all off the other superfluous code. Next tutorial we
will be going over a real crackme (I promise).

In this tutorial, all you need is OllyDBG (either my version or the original), and a copy of my revised
crackme, which, by the way, | am calling the “First Assembly Kracking Engine”, or F.A.K.E. Itis included in
the files download for this tut. (and yes, Gdogg, | know kracking does not start with a ‘K’ &

Let’s get started.

Olly Main Screen

If you load up the FAKE.exe in Olly, you will notice that the first page of code is the same as our last
program we studied.

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/1.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
Random
Rectangle

FE A 1 ARE

rerrrrrrrrr-

Let’s run the app, as knowing how it works is vitally important:

r

B Qur Main Window-WinAsm

Click on register and the following dialog appears:

Enter Registration Code D@lgr

r

| entered a serial:

Enter Registration Code g@|@
21212121212121212|

r

Then, after clicking the Enter Serial | get the following very bad message:

Enter Registration Code

Bt |

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/2.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/3.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/4.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/5.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/6.png
Random
Rectangle

Now, | want to show you the first method every new reverse engineer learns in order to find the registry
checking routine:

Let me first say that many ‘seasoned’ reversers (read crackers) out there think that this method should be
rarely used. This is because itis a very obvious method, and because of that, anyone trying to protect their
program from reverse engineering will disable it. Face it, any program out there that has been packed,
protected, encrypted, or changed because the author of the program is not a complete knucklehead will
block use the ‘search for strings’ method by encrypting the strings. THAT BEING SAID, | find that there are
a lot of knucklehead authors out there, so don't tell any ‘seasoned’ crackers out there, but it's one of the
first things | check. (ps. It's also one of the first things the ‘seasoned’ crackers check too &

Basically, this method involves asking Olly to search the memory space of your program, searching for
anything that looks like an ASCII or Unicode text string. Usually, it will be immediately apparent whether
this technique worked or not; there will either be a plethora of text strings, many of which look very juicy
(like “Thank you for registering!!!”), or there will be very few text strings, many of which look like this:
‘F@7=".

Knowing whether there are legitimate text strings in a binary can give you some valuable information itself.
such as whether the binary has been packed or protected in some way, whether it's perhaps a malicious
binary (after all, having the string “Send all user’'s passwords to www.badguys.com” wouldn’t be very
responsible virus writing), and even if the binary was written in a more rarely used language.

Let's see how we do this. Right-click in the assembly window and choose “Serach For”->"All Referenced
Text Strings™:

TION

Chr+K

b
4
»
b

Mame in all modules

Ctrl+F
kel

mbolic name CErl+FL _
Ctrl+B

ed comment

ripk Functions. ..
Durnp debugaged pr
rongoD
g R
fppearance »

Search for Strings

And Olly will search the program’s memory space and display the Text String Window:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/7.png

r

Bl
K Text strings referenced in FAKE:. text Q@@
: : =

Hmmm, this looks interesting:) Keep in mind that this list is REALLY short as this app is really tiny.
Normally, there could be thousands of entries here. Anyway, do you notice what | notice:

Looks very promising. Let’s jump to the code there and see what we see: double click on the “That serial

[& *G.P.U* - main thread, module FAKE

It is now time for me to introduce the second rule in

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/8.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/9.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/10.png

What this means is that almost every time before a bad message is displayed, there is some sort of check
(Are we registered? Was the entered reg code correct? Is the time trial over?...) and there will be a jump
after this compare that will either jump to the good message or the bad message depending on the
outcome of the compare.

Let’s look for ourselves...Starting at the good message “This serial is correct!!!!” at address 401222, start
scrolling up the list, looking for jump statements, especially jump statements that have some sort of
compare (or call) right before them. If it's a call, you can probably guess that the compare is inside the
call...In our example, the first jump is a JNZ at address 401220. | have added an arrow to show you where
this jump will go if it is used:

Hmmm. Notice that it jumps right past the message we want and right to the message we don’'t want g
BUT, notice that right above this JNZ instruction is a CMP instruction # That means this is a potential
point that determines whether Olly displays the message we want or don’t want. Let’s scroll up further:

[& *G.P.U* - main thread, module FAKE

There is another CMP/JNZ pair at 401212, and finally, a last one at 401207. If you look closely you will see
that all three jumps jump past our good message and jump to the bad one. Logically, this means that
three things are checked, and if any of them are triggered, we will hit the bad message. But, what happens
if we don’t jump on any of these three jumps? Well, you can see that we will “fall through” to the good
message. So, what this really means is we have to keep those jumps from jumping so that the program
will keep “falling through” until it reaches our good message &

Let’s run the app to see what it does, but first | want to show you:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/13.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/11.png

Comments are very useful, especially when you start getting into very intricate code. Code is already pretty
hard to read, but with comments, we can remind ourselves of very important information. Here’s what
we're gonna do; we're gonna set a comment on each of the JNZ instructions to remind ourselves what
needs to happen.

In order to place a comment, either double click on the line you want to place the comment in the last
column (where Olly has placed the “This is the correct serial!!!!” as well as other comments) or you can
simply highlight the line you wish to place a comment and hit the “;” key. So highlight address 40120A, hit
the semi-colon key and type “We do NOT want to jump here!”. Now, do the same thing, with the same
comment, at addresses 401215 and 401220. This will place a comment on each of the JNZ instruction:

GetOlal

We do MHOT want to

o MOT want to

MOT wan

Now, let’s set a breakpoint at address 401201 (or somewhere near here as it's before our jump
instructions):

and let’s run the program. Click “Register” on the crackme, enter a serial, and hit “Enter Serial”. Olly will
now pause at our breakpoint:

Now, the first thing we notice is the line we stopped on:

MOV EBX, DWORD PTR DS:[403078]

From our last tutorial, we now know how to view the memory contents at this memory location- right-click
that instruction and choose “Follow in Dump”->"Memory Address”. We then see that location in Olly’s
dump window:

well, well, well. This just happens to be the serial number | entered. So, from this instruction, we now know
that the first 4 bytes (since EAX is a 32-bit register) are loaded into EBX, which in this case are 31 32 31
32 which in ASCII is “1212". Hit F8 and let's check EBX:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/14.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/16.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/16.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/161.png

If you want to see the actual ASCII characters in EBX, you can double click on the EBX register and it will
show you the data in a couple of different formats, one of which is ASCII:

Mo dlf‘, EBX

*For later use, remember this is also a way to change the register ‘on the fly’ if you want to experiment with
different values in different registers...

| guess even though you already know this from reading your assembly language book (I mean, come on!
| even put one up in the section!!!), that | don’t need to go over this, but just for a refresher | will
explain...

(or at least the least you need to know about it)

Processors store data differently in memory, depending on the architecture of the processor. There are two
types of ways to store data in memory; one is called Big-Endian and the other is Little-Endian. Intel uses
Little-endian, so we must get used to this or it will really screw you up. Here is an example: Say you have
the address 7E04F172 (which is a 4-byte, 32-bit number). When we split this up in to bytes you get 7E, 04,
F1, 72. Now, one would think that when storing these bytes into memory (let's say at location 1000) it
would look like this:

1000::7E
1001::04
1002::F1
1003::72

as any rational minded person would. But since the developers at Intel are so much smarter than us mere
mortals, they decided to store it in the much more logical way:

1000::72
1001::F1
1002::04
1003::7E

The first example above is Big-Endian, meaning the biggest end of the number (in decimal order) is stored
first in memory. Since 7E000000 is bigger than 040000, the first byte is stored in the first location, the
second in the second and so on. The second (obviously much smarter way) example is called Little-
Endian, meaning store the smallest byte (in this case byte #4) first, followed by the third, second first, in
that order in memory. Since 72 is smaller than F100, that will be stored first.

The true genius of using LittleEndian as opposed to it's bigger brother really shines when you start viewing
memory side to side. In Big-Endian, the number 7E04F172 lookes like this:

TEO4F172

which is obviously very confusing. Thank god that, with the help of Little-Endian, that same number
7E04F172 looks far more logical as:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/17.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/18.png
http://thelegendofrandom.com/blog/tools

72F1047E

What, you say? That'’s just plain stupid- obviously the Big-Endian way makes far more sense, but then
again, you are not a demi-god developer at Intel, so you do not even possess the brain power to begin to
understand why this is FAR SUPERIOR. Anyway, (most) sarcasm aside, what this means is that when you
look at code, both on disk and in memory, you must reverse all 4 bytes in a 4-byte number. Of course this
is made even worse that Olly SOMETIMES does this for you, as you can see in the next picture:

FEAA] 2T

e do MOT want to jump

Thesa are In the correct order

We do MOT want tx

That's all I'm going to say about this for now, but for a while | will point out the Endianneses(es)ess to you.

Now, back to our register window:

Modify EBX

H imal

hed

You will notice that the hexadecimal representation is in Little-Endian order (it should be 31323132) and
that the Char(acters) are backward, as my serial started with 1212, not 2121. Trust me, you will get used to
this.

Let’'s now move on to the next instruction:
CMP BL, 61

This is obviously a compare statement, comparing BL, which is the first byte in the EBX register
(RTF(asm)M), with the value 61 (hex). We don't really have a clue what this means (yet) so lets step over
it. Finally we arrive at the first of our JNZ instructions:

JNZ SHORT FAKE.401236

Which as we recall, since we can read our comments we made earlier, that we DO NOT want to make this
jump. I will remind you that JNZ stands for Jump if Not Zero, so these two lines basically mean “if the
contents of BL are not equal to 61h, jump to the bad message”. Well, we can clearly see in the EBX
register that the far right byte (BL) is not 61h, but instead is 31h, so already we're stuck and we’re going to
take this jump that we so much did not want to ¢

But wait! Olly is a ‘dynamic’ debugger so we should be able to dynamic that jump! Well, since you probably
read an entire chapter on flags in your assembly language book, | am not going to go over:

We briefly went over flags in an earlier tutorial, and I'm really not going to go into detail on them as I'm sure
the index of your assembly book has an “F” section, but | will say that flags are the way the processor can
know what the outcome of certain instructions are. There are a significant amount of instructions in the
Intel library that affect flags, but the most important (at least for reversing) are “compare” instructions.
Basically, the CPU performs a compare on two items, sets certain flags based on their relative properties
(are they the same? is one bigger? is one negative?) and then performs jump statements based on these
flags. This is all just a very fancy way of saying IF THEN statements. For example, in a high-level language
you may have a line like this:

iT(serialNumber == 3)

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/19.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/18.png

dontShowNag() ;
showNag(Q) ;

in pseudo-assembly, this same set of instructions would be something like this:

compare serialNumber with 3
Jump (if they are equal) to dontShowNag();
Jump to showNag(Q);

and in real assembly may look like this:

MOV EAX, addressOfSerialNumber CMP EAX, 3 JE addressOfDontShowNag JMP
adressOfShowNag

First, EAX is loaded with our serial number. Next it is compared with “3". If it is equal to 3 we jump to
dontShowNag(). If it is not equal to 3, we pass the JE (Jump if Equal) instruction and hit the JMP (JuMP)
instruction, which automatically jumps to showNag(), regardless of any flags.

The important flags (for us) are the ZERO flag and the CARRY flag, shown as “Z” and “C” in Olly.
Basically, by changing one of these two flags, we can prevent (or force) any jump in the program, as we’ll
see right now:

0 PTR

e do HOT want o jump he

g do HOT want to jump he

On the line we are paused at (the first INZ) we can see that Olly is going to take this jump by noticing that
the jump arrow is red. If we were not going to take the jump, this line would be grey. ***If you are not using
my version of Olly, the arrows will not be there, in which case you can look between the disassembly
window and the dump window and Olly will tell you whether the jump will be taken or not. In our case, it
shows this:

Now, we know Olly will take this jump unless we intercede, so let's do that. Go over to the register window
and look for the “Z” flag:

Notice that it is a zero. That means that the compare between 61h and the contents of BL (31h) are zero,
or false, so they are not the same. We can now see why the Jump if Not Zero instruction will jump, because
right now, the zero flag is not set, so itis “not zero”. Now, double click on the zero next to the zero flag and

it should change to a 1:

and now notice that the arrow is grey (and that Olly says the jump is NOT taken):

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/201.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/21.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/22.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/23.png

HOT want to

MOT want

We have changed Olly’s flags, and at the same time, we have changed the programs behaviour @ Go
ahead, big shot, and hit F8 (you've earned it) and we should not take the jump :O We are now entering
what looks like the same code segment, except this time EBX is being loaded with the second character of
our serial, and it is being compared with 62h instead of 61h:

We do MOT want to jump heret

e do HOT want to jump heret

We know that the second digit of our serial is not 62h and now we know what to do- F8 until you get to the
JNZ statement, double click the zero flag, and keep going !!! You'll pass right past the JNZ statement. We
are almost there! The last section compares the third digit of our serial with 63h. The third digit of our serial
is 31h, so the jump would normally be taken. Go ahead, you know what to do. We will then land on
address 401222, one statement past the third jump:

You're heart should be pumping, because | think we both know what comes next. There are no more
jumps between us and salvation, so either step over the next couple instructions (if you like to draw out the
suspense) or just run the app (if you're like me and can’t stand suspense) and we have reached the pearly
gates:

Enter Serial
Exit

I know you weren’t expecting this, as this tutorial has already been so exciting, but | am going to end with
two things. The first is another

and in light of this new rule, | am leaving you with some homework. You mission, should you accept it, is
to find out what the serial number is. This means, what is the input that you must enter into the serial box
for none of the JNZs to jump? You know you have found it when, after entering the correct serial, you do

-till next time

-R4ndom

ps. If you need a hint you may click on this_link.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/24.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/25.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/26.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/27.png
http://www.thelegendofrandom.com/blog/hint.html

