
R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

R4ndom’s Tutorial #23: TLS Callbacks
by R4ndom on Sep.25, 2012, under Intermediate, Reverse Engineering, Tutorials

Unfortunately, our lives as reverse engineers is not always easy. If all it took to patch an app was a deleted
resource or a quick patch, a lot more people would do it. Sometimes we must get a little ‘low-level’, wallow
around in the operating system files, single-step an exception handler, or reverse engineer an unknown
packer. To have a well-rounded skill set as a cracker, we must know a lot about a lot (or at least where to
look about a lot) and it can get pretty technical.

This tutorial is about one of those technical areas: TLS callbacks. It is not easy, nor is it simple, but it can
ruin an otherwise nice day of a reverse engineer that doesn’t at least understand the basics of what they
are, when they are used, and how to overcome them.

As in all tutorials on my site, the required files are included in the download of this tutorial on the tutorials
page. We will be looking at three binaries, all included. We will also be using an Olly plugin called
TLSCatch by Walliedassar, also included. Lastly, we will be using CFF Explorer, available on the tools
page.

So get focused and let’s tackle the subject of TLS Callbacks…

Introduction

TLS stands for Thread Local Storage. As you probably know, threads are execution entities that run inside
of a process. Programs make use of threads when they wish to accomplish multiples actions concurrently,
even though sometimes ‘concurrently’ is just an illusion. For example, let’s say you want to print a
document. You press the ‘print’ button and the program formats the document and sends it to the printer.
This activity would be run in a separate thread. The reason for this is we do not want to stop down the
entire application until the document is done printing. We want it to start the print process and then
immediately return to us, perhaps to do some work while it’s printing.

If you have multiple processors, each thread can run on a separate processor. This can speed up
applications as multiple processors can be doing work at the same time. Concurrency can also benefit
from a single processor system. Take for example out print scenario above. Once the application sends the
document off to the printer, the application will sit around, waiting for the printing activity to finish. This is A
LOT of time, especially for a processor. During this waiting time, we can be doing other things. Threads
allow a processor to split up activities, and while waiting for a response from one, can be working on
another.

When these multiple threads are created, they usually share the same memory. For example, if we have
an address book application and we decide to print a contact, the print thread will begin and have access
to the main contact data. If, right after we start the print thread, we want to start another thread that begins
showing the contact data on the screen (after all, the print dialog covered some of it), this new thread also
has access to the contact data.

Threads access this pooled memory by calling the same addresses. In other words, thread A calls address
1000 to get the first contact, and thread B calls 1000 and gets the same data. The two addresses are the
same. But what happens when we want a thread to have it’s own data? Perhaps we want the printing
thread to have a variable for if the printing was successful or not. All threads do not need to have this
variable. Therefore, this thread needs a ‘local’ variable, one that only that specific thread has access to.
This becomes really important when a single thread needs access to a large class or union. We do not
want every thread started to have access to such a large chunk of memory.

Windows provides a way that a thread can have it’s own ‘local storage’. This storage is similar to a stack,
but is only accessible to a specific thread. There is a certain chunk of memory that will be reserved for this
thread, and variables can be stored in it. This way, only this one thread has access.

We can also set up the threads so that they all have a local copy of a variable, but they all access it

The Legend Of Random
Programming and Reverse Engineering

Login

 Remember me

Recover password

Recent Posts

And The ‘Obvious’ Award Goes To…

New Weekly Challenge

R4ndom’s Tutorial #23: TLS Callbacks

The Year So Far (In Spam)

R4ndom’s Guide to RadASM: Creating
Our First Project

Recent Comments

Lee on R4ndom’s Tutorial #22: Code
Caves and PE Sections

R4ndom on R4ndom’s Guide to RadASM:
Creating Our First Project

R4ndom on New Weekly Challenge

R4ndom on New Weekly Challenge

robin on New Weekly Challenge

Archives

September 2012

August 2012

July 2012

June 2012

May 2012

Categories
Beginner

Challenges

Intermediate

Modifying Binaries

Random's Ramblings

Reverse Engineering

Tools

Tutorials

Uncategorized

Home Tutorials Tools Contact Forum Challenges

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/intermediate
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
http://thelegendofrandom.com/blog/challenges
Random
Rectangle

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

through the same address. For example, we could have a count variable in every thread, and every thread
accesses it through memory location 1000. But they are all different. Even though they are all the same
address, Windows separates each thread’s storage, so that location 1000 to thread A will not be the same
variable (in memory) as thread B.

This TLS storage area can be used for other, often malicious, activities. Code can be put into this TLS
section and can be run. The interesting thing about this is that the TLS code will run BEFORE the main
entry point of the binary is run. When the Windows loader first loads the binary into memory, right after it
loads in the DLLs needed, it checks a location in the PE header to see if there is a TLS section set up, and
if there is, it looks for a callback address. If one is provided, this address is called, and the code in this
section is run. After this runs, the loader then hands control over to the main application.

What all this boils down to is that when you load a binary into a debugger, often times we have the
debugger set to stop at the module’s main entry point. Once our debugger has stopped here, out TLS
code has already been run. This code can do many things including checking for a debugger, infecting a
system, or formatting a hard drive. And an unwary (or unskilled) reverse engineer will load this binary into
Olly, and before you know it, your system is infected (or worse).

You may see this behavior empirically when you load a binary into Olly and the program immediately
terminates, without ever touching any code in the actual main module. If this ever happens, your first
thought should always be “check for a TLS section”.

Now let’s look at an actual example…

Investigating the Binary

First load the binary200.exe into CFF Explorer. Clicking on Data Directories we can immediately see that
there is a TLS section specified:

Note: Very few targets will ever have a TLS section specified unless they are using it as an anti-debug
mechanism as most program never use TLS. The exception is Delphi programs which use them for
internal reasons.

There are two properties here. The first is TLS Directory RVA. This is a relative virtual address that points
to the directory for the TLS. The directory contains various attributes of the TLS structure including its’
starting and ending address and its’ characteristics. Next is the TLS Directory Size, which in this case (and
most cases) is 0×18 bytes.

Another thing you should notice is that the TLS itself is located in the .data section. This does not always
have to be the case, and this will be important shortly.

Fortunately, CFF Explorer makes looking at the TLS directory very easy- simply click on the TLS Directory
tab:

RSS Feed

Meta

Register

Log in

Entries RSS

Comments RSS

WordPress.org

Subscribe

Enter your email to subscribe to future
updates

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/175.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/236.png
Random
Rectangle

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

Let’s go over these fields.

StartAddressOfRawData: The address (offset) of the raw data on disk. Rarely used.

EndAddressOfRawData: The end address on disk. Rarely used.

AddressOfIndex: The slot in the TLS array that the TLS takes.

AddressOfCallbacks: A pointer to an array of callback addresses.

SizeOfZeroFill: Rarely used.

Characteristics: Rarely used.

The only real field of value in this entity is the AddressOfCallbacks. This is a pointer to an array of
callbacks. Because we can have more than one TLS callback code routine, this points to the first one in
the list. There can be several callbacks, though, and the only way to see them all is in a hex dump. So
that’s where we’ll go next…

The Dump

We saw earlier that the TLS directory structure is stored in the .data section, so let’s bring that section up
in CFF Explorer:

As soon as you click on the .data section, CFF tells you that it contains TLS data and where the directory
begins:

Though keep in mind that this is not the beginning of the TLS section, only the TLS directory. CFF will
show a hex dump of the beginning of the .data section:

We will take a closer look at this section, in order to understand what data is contained in this region.

CFF Explorer has told us that the actual directory has started at offset 0×30 (or 0×7030 in the .data
section, which is the same address). Following along with the various fields in the above picture of the TLS
directory, at offset 30 is the StartAddressOfRawData and the EndAddressOfRawData:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/331.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/428.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/526.png

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

Next up is the AddressOfIndex, which we can see is 409781 (little endian):

Next is the AddressOfCallbacks. The address here is 407014:

This address should ring some bells…notice that it is at address 7014 after our ImageBase of 40000. This
points into the .data section of our binary, the section we are currently looking in. So this address field
holds a pointer to a callback, a pointer to another address in the .data section at offset 0×14 (the .data
section starts at 0×7000, so 0×7014 is offset 0×14 in section 0×7000). Looking to this address, we see the
actual address of the TLS function callback:

So 401450 is the actual address of the TLS callback code. Let’s have a look at this code in Olly:

This is the actual code in the TLS callback. Now let’s confirm when this callback is actually called. Remove
all breakpoints in the code and set Olly to run until the beginning of the main module:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/626.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/719.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/817.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/914.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/1019.png

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

and please make sure the TLSCarch plugin is not in the plugins directory for right now. When we run the
app, it automatically terminates, never stopping at the entry point (which is 401000):

Now let’s try something a little different. Set Olly to break at the system entry point:

and set a breakpoint at 401000, at the beginning of the actual code. Now, when we re-start the target, we
will break in ntdll.dll (before anything has run). Hitting F9 and the target terminates again. We went from
the system entry point and never made it to our program’s entry point.

One last thing…place a breakpoint at 401450 (the beginning of the TLS callback) and re-load the target.
We first stop at the system entry point. Now run the target. We stop at the TLS callback. This proves that
our callback is running between the system entry point and the beginning of our program:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/1121.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/1219.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/1317.png

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

Now that we’re here, let’s take a look at what this callback actually does:

As you can see, there is some heavy anti-debugging going on here. First is a manual call to
IsDebuggerPresent at address 40145F. This calls the following routine:

which, if you recall from my last tutorial, is just the manual way of calling this API. Next we call the
NQuerryInformationProcess anti-debugging API:

When called with ProcessInformationClass set to 7 (ProcessDebugPort constant), the system will set
ProcessInformation to -1 if the process if it is debugged.

Interestingly, this routine further obfuscates itself by loading the address of ntdll and the

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/1513.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/176.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/237.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/332.png

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

NtQueryInformationProcess manually. Next we call another system debug check at 40146D. After this call,
we must change the zero flag to keep going (unless you happen to have all of the options in OllyAdvanced
set) :

The code then calls it’s own exception handler at address 401400:

Here, the target registers its own exception, pointing to address 401426. It then purposely causes an
exception, hoping the debugger will get confused. Fortunately, Olly is not confused and passes execution
to the proper exception handler at address 401426.

After all this, we finally arrive at the proper entry point, though, this program is very sneaky and later calls
the TLS code again, as well as some other anti-debugging techniques. I will stop here as our tutorial is on
TLS callbacks and not anti-debugging, but feel free to investigate the target further.

Multiple TLS Callbacks

Programmers are not limited to only one TLS callback. Let’s look at one program that has multiple
callbacks and see how it differs. Load TLS_example_1.exe in CFF Explorer and click on the “Data
Directories”:

Here, we can see the offset of the TLS Directory information is at offset 08 in the .data section, which
starts at 03000. Clicking “TLS Directory” in CFF, we see the information displayed in a friendly manner:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/429.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/527.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/177.png

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

The important field here is the AddressOfCallbacks, and we can see it is at offset 03020, or offset 020 in
the .data section. Now clicking on the “Section Headers”, and then on the .data section, CFF tells us that
the TLS is in this section and shows us a dump:

Looking at the raw data, we see the familiar start and end addresses at the beginning of the TLS directory
(at offset 08):

Next we see the AddressOfCallbacks (skipping the other fields as they are not important here):

So we know the address of the callback array is at 403020, or offset 03020, or 20 bytes after the beginning
of the .data section. Looking at the 20th byte and orward, we see that there are 5 addresses, meaning this

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/238.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/333.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/430.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/528.png

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

binary has five callbacks:

Looking at this, we know that the TLS callbacks are at addresses 40101A, 401034, 40104E, 401068 and
401082.

Now this time, before you load the target in Olly, copy the TLSCatch plugin into the plugins directory. This
time, when we load the target in Olly, we see that several breakpoints have been set:

The first breakpoint is the module’s main entry point (set because I have the ‘break on module’s entry
point’ set in Olly). Next there are 5 breakpoints set, each with a label that begins with “tlscallback_#”. This
plugin has automatically parsed our binary, extracted the callback address, and has placed a breakpoints
on all of the callbacks. Double-clicking one of these shows us the actual code for the callbacks:

Obviously this is a really simple binary, and all that the callbacks do is display a message box, but you get
the idea.

Keep in mind that DLLs can have TLS callbacks just like exe files. This means if we have 3 DLLs that our
target requires, all of which have TLS callbacks, when our exe loads, the Windows loader will load each of
these DLLs into the target’s memory space, and as each is loaded, the callbacks for each will be called.
This would be quite a challenge to keep track of. But things can also get a little worse…

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/627.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/720.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/818.png

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

Dynamically Created TLS Callbacks…

One thing that is not widely known (and because of this we’re sure to see more of) is the fact that TLS
callbacks can be created dynamically, bypassing most of our techniques for discovering them. The way
this works is by setting up a single TLS callbcak (or loading a DLL with a callback in it), which then creates
another callback dynamically. Our plugin would not catch this, and the callback would not show up in the
PE header. The only way to find such a trick would be to start at the system entry breakpoint (in ntdll.dll)
and step through until you created the new callback, stepping into it at this time,and debugging it as it’s
run.

Nothing like keeping things interesting…

Let’s take a look at a program that creates TLS callbacks dynamically (thanks to waliedassar for providing
the binary). This is a pretty tough executable to reverse in that every time the TLS is called, it basically
resets itself to call the TLS callback again. It also has some anti-debugging mechanisms built in. If we run
this binary in a command window, we see that a message is displayed over and over with an incrementing
counter. This counter is actually keeping track of every time it calls the TLS callback:

What this program does is modifies itself so that when the TLS is called, it resets it to call it again on the
next loop. This loop is deep in the Windows loader. It loads the address of the callback and passes
execution to it. It then checks to see if there is another callback, and if there is, it calls it. What the program
is doing is making the loader think there is another callback, so the loader keeps calling (the same)
callback over and over.

Loading Dynamic_TLS.exe into Olly, we see that Olly has found the first TLS callback:

Double-clicking on the tlscallback_0 line, Olly takes us to the actual callback code:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/178.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/239.png

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

This routine first does some housekeeping, then checks if we’re being debugged and exits if we are. If not,
it loads another address into the callback array, so that the loader will call this next address (401120). It
then returns control to the loader. The loader then calls what it thinks is the next TLS callback at address
401120. TLS Catch will not break at this new TLS callback, as it was created dynamically:

This routine creates yet another TLS callback at address 401163. It also checks if there is a breakpoint set
on this routine and exits if there is. It then returns to the loader which now calls the third callback:

This routine then quietly calls printf to display the message and sets the TLS callback back to the original
entry of the first callback. This makes the loader start the process all over again.

This binary is obviously an example of an extreme case, though packers and malware are always looking
for extreme cases, so don’t be surprised if you don’t see something like this in the near future.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/334.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/431.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/529.png

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

Making Our Own TLS Callback

For the really sadistic out there, I have decided to include a section on making our own binary that has a
TLS callback so you can investigate it further. I will use RadASM to create a binary that does nothing but
call our own callback, displaying a goodboy or badboy depending on if we’re being debugged or not
(though this won’t work if you are using a plugin that hides Olly).

First, we create an empty Win32 project. I have called it, surprisingly, “TLS Callback”. Now create a “TLS
Callback.Asm” file and enter the following data (I have also included the source file for this project if you
would like to save yourself some typing):

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

You can see that I initially create a structure that resembles the TLS structure. I then populate the callback

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/6a.png

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

address, TlsCallBack2, as the offset of our TLS code. The main routine does nothing but quits. Finally, the
TLS code checks IsDebuggerPresent and displays the appropriate message depending on the results.

This binary keeps track of a flag for if the callback has been called or not. This is because TLS calls can
come both at the beginning and at the end of a programs life cycle. We only want to run ours once, hence
the flag.

After building the binary, we must change the TLS info inside of the PE header. Load our compiled
program into CFF Explorer and click on the Data Directories tab:

You will notice that there is no TLS information in the binary. Clicking on the Section Headers tab, then on
the .data section, we see that our TLS is actually in there and it begins at offset 0×46:

Now, clicking back in the Data Directories, double-click in the TLS Directory RVA and change it to 3046.
Then change the TLS Size to 18. Now save the binary (I saved it as “TLS Callback_modified.exe” then re-
load it in CFF Explorer. We can see that our TLS is there and that CFF Explorer has created a directory
for it:

Clicking on the TLS Directory tab, we see the information we hard-coded into the binary:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/721.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/819.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/915.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/1020.png

R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

http://thelegendofrandom.com/blog/archives/2418[9/27/2012 2:26:12 PM]

No tags

Now load the binary in Olly. There is now a breakpoint for our callback routine in the breakpoints window:

and double-clicking on this, we can see our actual TLS callback:

and if you run the app, you will see that it works just like expected…

Special Thanks to MRHPx for his injection info, Ange Albertini , ax0s, and Waliedassar & Eric Carrera for
help with the more technical stuff.

-Till next time

R4ndom

Leave a Reply

 Name

 Mail (will not be published)

 Website

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/1122.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/1220.png
http://thelegendofrandom.com/blog/archives/code.google.com/p/corkami/
http://waleedassar.blogspot.com/
http://blog.dkbza.org/
Random
Rectangle

	thelegendofrandom.com
	R4ndom’s Tutorial #23: TLS Callbacks « The Legend Of Random

