
R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt.
1

by R4ndom on Sep.02, 2012, under Beginner, Reverse Engineering, Tutorials

Introduction

In this tutorial we will go over working with targets written in Visual Basic. Unfortunately, to become a well-
rounded reverse engineer, we must know how to deal with these animals as there are many applications
written in VB. Because this is a rather large subject, I will split it into two tutorials.

We will be looking at two crackmes, both included in the download of this tutorial. We will also be using VB
Decompiler (the Lite version) which is included in the download.

As always, this tutorial, as well as all support files, can be downloaded on the tutorials page.

Introducing Visual Basic

Visual Basic is an event-driven language. This means that instead of a program running from beginning to
end, VB reacts to events that happen in a window. This is similar to Windows programming in that events
take place and call methods that are registered to handle those events, but VB differs in that most of the
processing and message creation is performed in a DLL file. This file is the Visual Basic ‘runtime’.

The process of creating an application is a little different than, say, C++. You generally create a window (or
dialog box) by dragging elements from a toolbox onto your window canvas. It is similar to C# .NET in this
regard (and Delphi). Once you have your window built, you then create methods that will handle any
events that can come from a user interacting with your windows contents; if a user clicks a button, the
method you have made that handles the button event is called. If a user types in an edit box, the edit box
method is called. Because the only code you are providing is the event code, most of the window’s
processing is done for you. All of this processing is done in a DLL file called “msvbvm60.dll”, though the
’60′ may be different if using a different version of the runtime.

Another huge difference between Visual Basic and more traditional languages is a programmer has the
option of compiling a VB application natively or in something called P-code. Native is simply assembly
language, running natively on a processor, therefore OS and processor specific. P-code, on the other
hand, is interpreted, much like Java and .NET, making it runnable on various operating systems.
Interpreted means that, after compiling your VB application into P-code, when a user runs your application,
something like a virtual machine is run, which interprets the P-code into native code for that specific
operating system on-the-fly. When used, the p-code engine is a relatively simple machine that processes a
series of “high-level” operation codes (“opcodes”). This engine is also stack-based, so very few arguments
or functions are passed through registers.

The benefit of this is that if you install the VB runtime on, say, a Mac, then the P-code compiled application
will be interpreted and run on a Mac. Switching to a Linux environment simply means running the Linux
virtual machine (by installing the runtime), and voila, your app will run in Linux. Of course the downside is
you take a speed hit as the code must be converted to native code before running.

Because VB applications can be compiled into P-code, the traditional debugging tools are a lot harder to
use. Combine this with the fact that most of the time is spent in a DLL we don’t care about, and it can be
quite challenging. The good news is that there are a couple tools out there that will help us. We will be
going over these shortly.

Investigating The Target in Olly

When you first load a Visual Basic program in a debugger such as Olly, you will see a call is immediately

The Legend Of Random
Programming and Reverse Engineering

Login

 Remember me

Recover password

Recent Posts

R4ndom’s Tutorial #20A: Working With
Visual Basic Binaries, Pt. 1

Wait, Has Anyone Seen Internet Explorer?
He Was Just Here…

Dealing with ASLR

We Have a Winner

PE file key note

Recent Comments

Juan on R4ndom’s Tutorial #18: Time
Trials and Memory Breakpoints

Anonymous on Tutorial #4: Using Olly, Part
2

Anonymous on Tutorial #5: Our First (Sort
Of) Crack

R4ndom on Dealing with ASLR

The Legend di Festival Schouwburg X |
lazionews.info on DLL Injection – A Simple
Message Box

Archives

September 2012

August 2012

July 2012

June 2012

May 2012

Categories
Beginner

Challenges

Intermediate

Random's Ramblings

Reverse Engineering

Tools

Tutorials

Home Tutorials Tools Contact Forum Challenges

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
http://thelegendofrandom.com/blog/challenges
Random
Rectangle

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

performed into the VB DLL, where it will stay until an event happens. Because of this, VB programs are a
little different to reverse engineer. The first thing you will notice is that the call stack is worthless; this is
because most of the program’s running time is within a DLL file, the VB runtime DLL. We don’t care about
this DLL, but we do care about the callback methods that handle events.

Another difference is in the way strings are handled. Because most of the message boxes, as well as all
other window controls, are stored in resource sections, Olly won’t display strings like a traditional C or C++
program. Therefore, using strings to find relevant sections of code is usually not an option:

If you want to see the following data yourself in Olly, load CrackmeVB1.exe.

Another hindrance to reversing is the fact that the method calls are completely different in a VB
executable. Instead of calls to such things as RegisterWindowEx and MessageBoxA, VB uses its own API
calls, embedded in the runtime DLL:

RSS Feed

Uncategorized

Meta

Register

Log in

Entries RSS

Comments RSS

WordPress.org

Subscribe

Enter your email to subscribe to future
updates

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/12.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/2.jpg
Random
Rectangle

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

Clicking through to one of these methods details the difference between VB and what we are used to:

As you can see, there are no helpful strings, no recognizable API calls.

Before we look at the tools at our disposal, let’s see what the basic file structure of a VB executable is. I
have loaded CrackmeVB1.exe, which is compiled in P-code. Scrolling to the top of the code in the
disassembly view, we see the list of functions in the binary:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/3.jpg
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/4.jpg

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

This is a reference for the runtime for the API calls that will be needed when the program is run.

Scrolling down a little we come to the jump table. This is similar to the jump table seen in most windows
binaries and is there to help with code relocation:

After this, we come to a vast sea of data. This is where the VB binary stores it’s resources. Anything from
strings, to buttons, to callbacks are stored in here. One thing to note is that Visual Basic uses the actual
name of a callback; so if you want “MyButtonCallback” to handle the button event, that string will be used
to reference it. Because of this, you will see the various callback names embedded in this resource
section:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/5.jpg
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/6.jpg

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

Scrolling down (much) further, we get to the actual event callbacks. These are the user generated callback
methods to handle the various events. As you can see, there is no documentation as to which callback
methods each is, though we will change this later with MAP files:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/7.jpg
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/8.jpg

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

Lastly we come to the Import Address Table, or IAT. We will get *much* more familiar with this in the
tutorials on unpacking:

and that’s pretty much it. Obviously, this isn’t a heck of a lot of information to work with. Fortunately, we
have a tool…

VB Decompiler Lite

VB Decompiler is available in both a ‘Lite’ and ‘Pro’ version, the Lite version being free (and so, the one
included with this tutorial). VB Decompiler allows us to decompile Visual Basic code, that has been
converted into P-code, back into the original VB source code. Well, almost anyway . It also allows us to
view the resources embedded in the executable in a much friendlier format. Running VB Decompiler Lite,
we first see the main screen:

Opening our first crackme, “CrackmeVB1.exe” and selecting the ‘Decompile’ button, we see the main
project:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/89.jpg
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/11.png

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

Most of this information is unimportant- mostly just file attributes etc. Notice, though, that in the project tree
(under the ‘Forms’ folder) there are two forms, form1 and Form2. These are the resources associated with
each form. Because there are two, we know that this application actually has two forms; One the main
window and, in this case, one an about screen. Running that app confirms this:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/21.png

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

You will also notice two additional things when running this target; The about screen is in a different
language, and you cannot click the “OK” button in the about screen. If any of you have followed my
tutorials on modifying binaries, you will know that, of course, this is my favorite thing about this crackme
.

If you double click on “Form2″ in the “Forms” folder (in the project tree of VB Decompiler) we will see the
various resources, along with attributes, for Form2:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/317.png

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

Here we can see that there is one button with the text “OK”, one label with the text in a different language,
and one callback method for the “OK” button event called “Command1″.

Double clicking on Form1 brings up the main window’s attributes:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/31.png

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

Now we know several important things about this crackme; the important button is called “Check!” and has
a callback method with the name of “Command2″, and Form1 is the main form we want to concern
ourselves with. If you look down the tree, under the “Code” node, you will see the code that corresponds
with the various forms. Opening the ‘Form1′ tree, we see that there are five callbacks, one for the “Checkit”
button (Command2_Click_402FD0) and others for other buttons and mouse movements. If you run the
target, you will see that the mouse movements callback is to change the color of the text when you hover
over it.

What we want is Command2, as that’s our callback:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/510.png

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

Double clicking on this shows us the actual assembly code…

The important thing about this screen is the address of the callback. All we really wanted to use VB
Decompiler for (in this case) is to find the address of the callback for the “Checkit” button, which we can
see is 402FD0. Going to this address in Olly (with the target loaded) shows us the beginning of the
callback function:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/52.png

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

If you set a BP here, run the target, and enter a username and serial, you will see that, after clicking the
“Checkit” button, Olly pauses at our callback. We have now found our main registration callback code!!!

VB Decompiler Pro

I wanted to show what the actual P-code looks like, and for that we need VB Decompiler Pro.
Unfortunately, this application requires that you buy it (… …) to use this function. Looking at the same
code in VB Decompiler Pro looks like this:

Here, we can see the actual P-code method for the callback. First, several variables are set up. The
background is changed at 4030A2, a procedure is called at 4030D9 (and it looks pretty interesting), and
then what is probably our magic compare/jump is performed at address 4030E1. We can see that if the
results of calling the procedure at 403800 are true, we will then jump to 4030E8. If not, we will fall through
and perform the instructions beginning at address 4030E2. Taking a little time, we could actually find the
patch this way, though I personally like going back to Olly to do it, as it doesn’t hurt my brain so much.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/6.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/7.png

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

Patching the App

Going to address 402FD0, the beginning of the callback, we can see the actual code:

Setting a BP here and restarting the target, then stepping down some, we see at address 4030AA the
background of the window changes color, just as we suspected from the P-code:

At address 4030E3, we see the badboy message pop up:

Looking at that area of code, we can see that right before it is a compare/jump combo:

Let’s set a BP at address 4030E1, restart the target, and see if that’s the check. When Olly pauses,

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/10.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/111.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/13.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/23.png

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

changing the zero flag forces the jump at address 4030E1. Unfortunately, this doesn’t display anything.
This means we want to take a closer look at the call to address 4032C0 at address 4030E3. Placing a BP
here, restarting the target, and stepping in, we see the main decryption routine:

As we will see shortly, there are some very standard method calls in VB that should be memorized.
Scrolling down the code, we see one of these at address 403644:

vbaVarTstEq is like StrCmp in native code- it checks two entities to see if they match. Highlighting the call
down three lines at address 40364F and clicking “Enter”, Olly follows the call and we see we’re on the right
track:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/33.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/43.png

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

So we know we must make the code execute to address 403644. Looking above this at the various jumps,
we find the following JE at address 40344F:

which jumps to the area of code we want:

So let’s place a BP at address 40344F, run the target, and change the zero flag to force the jump:

Now, stepping down to the JE instruction at 40364D, we obviously want to stop this from jumping over our
call to the goodboy. Changing the zero flag when we land here, we see that we have in fact cracked the
target:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/54.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/63.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/72.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/8.png

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

Frequently Called Methods

As stated earlier, there are some methods that are called a lot when looking at protection schemes:

_vbaVarTstEq
_vbaVarTstNe
_vbaVarCmpEq
_vbaStrCmp
_vbaStrComp
_vbaStrCompVar

9 out of 10 times, one of these routines will be used to compare a serial with the correct one. One of these,
_vbaVarTstEq, was used in the previous crackme.

Go ahead and load CrackmeVB2.exe into Olly. Performing a search of intermodular calls, we see one of
our suspicious calls:

Here we see the call to _vbaStrCmp. Looking up the String.Compare method call in the Visual Basic API,
we see that it takes two strings as arguments and returns an int. The return value is either -1, 0 (for equals)
and 1, depending on if the first is greater than or less than the second, or zero if they are equal. This is
what the call looks like in VB:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/9.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/22.png

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

Double clicking this call in Olly, we jump to where this call is performed.

Let’s set a BP on this line and run the target:

Entering a password (I entered ’12121212′) and clicking OK, Olly breaks right where we want him to:

Looking down a little bit at address 403f40, we see our wonderful compare/jump instruction. Stepping
down to there and changing the zero flag, then running the target, we see that this was our simplest crack
yet :

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/32.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/42.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/53.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/62.png

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1947[9/2/2012 4:54:44 PM]

Recent Posts

R4ndom’s Tutorial #20A: Working With Visual
Basic Binaries, Pt. 1

Wait, Has Anyone Seen Internet Explorer? He
Was Just Here…

Dealing with ASLR

Archives

September 2012

August 2012

July 2012

June 2012

Tags

adding functionality assembly language binary code

cave code caves cracking crackme ebook

exploting binaries Guide Olly ollydbg olly

tutorial plugins reverse engineering

No tags

There is a lot to take in here, but the most important thing is to mess around some on your own and
discover how this stuff works on your own. I have included a crackme that we will be going over in the next
tutorial (crackmeVB3.exe), so that you may try your hand at it. Following the same steps in this tutorial will
solve this crackme as well.

In the next tutorial we will go over Smartcheck and the Point-H method, as well as creating MAP files.

-Till next time

R4ndom

Leave a Reply

 Name

 Mail (will not be published)

 Website

RSS feed for this post (comments)

· TrackBack URI

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/71.png
Random
Rectangle

	thelegendofrandom.com
	R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

