- T -
The Legend Of Random | (LN

Programming and Reverse Engineering

Home Tutorials Tools Contact Forum Challenges

R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt.
1

by R4ndom on Sep.02, 2012, under Beginner, Reverse Engineering, Tutorials

In this tutorial we will go over working with targets written in Visual Basic. Unfortunately, to become a well-
rounded reverse engineer, we must know how to deal with these animals as there are many applications
written in VB. Because this is a rather large subject, | will split it into two tutorials.

We will be looking at two crackmes, both included in the download of this tutorial. We will also be using VB
Decompiler (the Lite version) which is included in the download.

As always, this tutorial, as well as all support files, can be downloaded on the page.

Visual Basic is an event-driven language. This means that instead of a program running from beginning to
end, VB reacts to events that happen in a window. This is similar to Windows programming in that events
take place and call methods that are registered to handle those events, but VB differs in that most of the

processing and message creation is performed in a DLL file. This file is the Visual Basic ‘runtime’.

The process of creating an application is a little different than, say, C++. You generally create a window (or
dialog box) by dragging elements from a toolbox onto your window canvas. It is similar to C# .NET in this
regard (and Delphi). Once you have your window built, you then create methods that will handle any
events that can come from a user interacting with your windows contents; if a user clicks a button, the
method you have made that handles the button event is called. If a user types in an edit box, the edit box
method is called. Because the only code you are providing is the event code, most of the window’s
processing is done for you. All of this processing is done in a DLL file called “msvbvm60.dIl”, though the
’60" may be different if using a different version of the runtime.

Another huge difference between Visual Basic and more traditional languages is a programmer has the
option of compiling a VB application natively or in something called P-code. Native is simply assembly
language, running natively on a processor, therefore OS and processor specific. P-code, on the other
hand, is interpreted, much like Java and .NET, making it runnable on various operating systems.
Interpreted means that, after compiling your VB application into P-code, when a user runs your application,
something like a virtual machine is run, which interprets the P-code into native code for that specific
operating system on-the-fly. When used, the p-code engine is a relatively simple machine that processes a
series of “high-level” operation codes (“opcodes”). This engine is also stack-based, so very few arguments
or functions are passed through registers.

The benefit of this is that if you install the VB runtime on, say, a Mac, then the P-code compiled application
will be interpreted and run on a Mac. Switching to a Linux environment simply means running the Linux
virtual machine (by installing the runtime), and voila, your app will run in Linux. Of course the downside is
you take a speed hit as the code must be converted to native code before running.

Because VB applications can be compiled into P-code, the traditional debugging tools are a lot harder to
use. Combine this with the fact that most of the time is spent in a DLL we don’t care about, and it can be
quite challenging. The good news is that there are a couple tools out there that will help us. We will be
going over these shortly.

When you first load a Visual Basic program in a debugger such as Olly, you will see a call is immediately

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
http://thelegendofrandom.com/blog/challenges
Random
Rectangle

performed into the VB DLL, where it will stay until an event happens. Because of this, VB programs are a
little different to reverse engineer. The first thing you will notice is that the call stack is worthless; this is
because most of the program’s running time is within a DLL file, the VB runtime DLL. We don’t care about
this DLL, but we do care about the callback methods that handle events.

@ CPU - main thread, module AfayAs_

mmmmmmmmm

eginning of VB program

Superf luo

Another difference is in the way strings are handled. Because most of the message boxes, as well as all
other window controls, are stored in resource sections, Olly won't display strings like a traditional C or C++
program. Therefore, using strings to find relevant sections of code is usually not an option:

@ Found strings are

DDDDD

[f you want to see the following data yourself in Olly, load CrackmeVB1.exe.

Another hindrance to reversing is the fact that the method calls are completely different in a VB
executable. Instead of calls to such things as RegisterWindowEx and MessageBoxA, VB uses its own API
calls, embedded in the runtime DLL:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/12.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/2.jpg
Random
Rectangle

Found intermodular calls

Address

Disassembly

Destinat ion

=8 >

s

BE4E1318 Cr
BE4EZEAC
BE4EZF 13
BE4EZF S
BE4EZE2F
BE4E2E42
BA4AIA5T
BE483673
BE4a36H2
Ba4a3680
BE4a3600
BE463 165
BE4E3193
BE4831B1
BE4EZ1EA
BE4EZ1CO
BE4ES2ES
BE4EZZ7E
BE4EZZTE
aa4a3291
BE48336R
Ba4a3395
BE4A33AR
BE4E3463
BE4634 1B
BE4E343E
BE4E3455
BE4E3421
BE4ESAF G
BE4ESEHE
BE4ESE1C
BE4EIE22
Ba4Ea352A
Ba4a3535
Ba4a3530
BE4a3542
BE4a3530
BE4E35HA
BE4E35E5
BE4E83504
BE4ESE06

A4 A22HA

JHP 7 1EEEEEE
CALL DWORD FT

OWORD
OWORD
OWCRD
OWCRD
OWORD
EDI

DWORD
DWORD
DOWORD
DWORD
DWORD
DWORD
OWORD
OWORD
OWORD
OWCRD
OWCRD
OWCRD
DWORD
ESI

DWORD
DWORD
DWORD
DWORD
DWORD
OWORD
OWORD
DOWORD
OWORD
OWCRD
OWCRD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
OWORD

05z [<£&EMSUBLMEE,
05z [£&EMSUBLMEE.
05z [<&MSUBLIMAE.
05
05

: [{&MSUBUMGE. #5935]

s [{EMSUBUMGE, #5835]
s [{&EMSUBLIMGE,
s [L&MSUBLIMGE,
s [L&MSUBLIMGE,
s [EMSUBLMEE,
: [&MSUBLUMEE,
05 [{&EMSUBLIMEE.
: [{&EMSUBLIMEE.
= [{&EMSUBLIMEE.

052 CL&MEL
: [{&EMSUBLIMGE.
: [{&EMSUBLIMGE,
: [L&MSUBLIMGE,

Z R SUBLIGH S

__wbaMewz 1

__wbaHresu ltCheckObj 1
__wbaHresu ltCheckOb]>]
[&EMSUBLIMER. #5333]
[<{&EMSUBLIMER. #5333]

__whaHresu ltCheckibix]
vbaFreellarlistx]
vbaFreellarlistx]
vbalbiget »]
ubaHresuLtChecthJ)]
wbaFreslbj
ubaFreeDbJ)]
whalbjSet »]

vbhaHrezu ltCheckObi>]
vhaFreelbj>]
vhaFreelbj>]
vbaHew2]

wbaMew2]
wbalenllar]
wballarSub k]
vballacForInit»]
whabewz>]

CEMSUBLMEE.
ELIMEE.

LEMSUBLIMGE.
LEMSUBLIMGE.
< EMSUEBLIMSE.
< E&MSVELUMEE.
LEMSUBLMEA. __wbalbjSet 1
wbaldllark]

<EMSUBLIMEE. #6323]
LEMSUBLIMEE. __wbaStollarllal>]
<EMSUBLIMEE. #5162]
LEMSUBLMGE. __wbaStr2:]

L &MSUBUMEE. _ wbaStoMove]
LEMSUBLIMEE. #5281 >]
LEMSUBLIMEE. _ wbaFpId4l:]
LEMSUBLIMEE. _ wballarInt]
LEMSUBLIMEE. _ wballarCat »]
<EMSUEBLMEE. _ wballarMove]
<EMSVBUMER. _ wbaFreeStrlistr]
__wbaFreelbj>]

[Initial CPU selection)

meubumER.
meubumER.
mewbumEd. __

whaMew?
wbaHresu Lt CheckObj
wbaHresu ltCheckOb)

rzubumcl . rtocRandamMen
rzubumcl . rtoRandamMen
rzubumcl . rtocRandomMen t

mewbumcd.

vbaRSIntI2

meubumcd. rtcRab

mEvbuMEE. |

mEvbumcE.
mEvbuMcE.
meubumed.
msvbwmEd.
meubumEE.
meubumEE.
msubumEE.
msubumEE.
msubumEE .
ULV TN (1T
mEvbuMEE.
[LELY =T 0

mEvbumEE. |

mEubuMcE.
mEvbuMEE.

meubumed.

msvbwmEd.

meubumER.
meubumER.

vbaHresu Lt CheckObi
vbaFreslarl ist
vbaFresllarl ist
vbalbjSet
wbaHresu Lt CheckObj
wbaFreselb.j
ubaFreeDbJ
vbalbjSet

wbaHresu ltCheckOb j
vbaFreelbi
vbaFreelb]

ubaMewz

uballartowe

ubaMewz

vbalenllar
vballarSub
vballarForlnit
vbalewz

wbalbiSet

wbald4llar

mzubumcl. rtcHidCharllar

mewbumEd.

vbaStrllarilal

rmzubumcl. rhoAns illa lueBstr

mebuMEd.
mevbumcd. __

vbaStrlz
uvbaStriove

mzvbumcl. rtcRElalFromBsatr

mEbuMEE. |
mEubumEE.

[LELY =T T
mevbumed.
msvbuwmEd.
meubumEE.

vbaFpld4
vballarInt
vballarCat
uballarfouve
vbaFreeStrlist

__wbaFreelbj

one of these methods details the difference between VB and what we are used to:

S8 HE114688
E4: A1 BEEREERE

=1}
&4: 23925 AEEEABEE
83EC 14

Fa i
61 14E6E
& il

E2
Frezesan
EZ
4C1E4E66

&R &C

58 40274008
=13

ca

FF1S 241848608
2040 EZ

FF15 EC1A4666
2970 FC

&8 9324008
EE @R

ES
EC1B4B880

HOF

MHOFP

PUSH EEP

MOL EBP,ESP

SUE ESF,HC

PUSH <JMP . &MSVELMEE,

MOW EAK, OWORD PTR FS:[A
FUSH ER:=

MOW OWORD PTR F2:[H1,ESP

SUEe ESP, 14

PUSH EES

FIISH ESI

FUSH EDI

DWORD PTR S5:[EEBP-CI1.ESF

DWORD PTR S5:[EBP-S1, Crackme_

ESI,OWORD PTR S5:[CEBP+S]

ERX,ESI

ERX, 1

OWORD PTR SS [EEF=41.ERX
AND ESI,FFFFFFF
PUSH EST
MOW OWORD FTR SS5: [EBF+81,ESI
MOL ECK,OWORD PTR OZ:[ESI]
CALL DWORD PTR DS:[ECK+4]
MOW EDi, OWORD PTR O5: [ESI]
w0R EDI,EDI
FUSH ESI
MOU OWARD PTR SS5:[EEF-121,EDI
CALL DWORD PTR DS:LEDR+2FCI
PUSH ER:

LEA ERX,DWORD FTR SZ: [EEF-131

PUSH ERR

CALL DWORD PTR DS:[<&MSUBLUMEE.

MOW ESI, EAX

PUSH GFF

FLISH ESI

MOW ECK,OWORD PTR OS:[ESI]

CALL DWCORD PTR O5: [ECK+GC]

CHP ERKX,EDI

FCLER

JGEE SHORT Crackme_.B848327E

FUSH &

PUSH Crackme_.B8482742

PUSH ESI

PUSH ERR

CALL DWORD PTR DS [<&HSUBUHGB.
LEA ECX,OWOR

CALE DWORD PTR DS [<&MSUBUH68

HMOL OWORD PTR S5: [EBF-41,E0I

FUSH Crackme_.BR4AI293

JHMP SHORT Crackme_. BR4EZI29S

LEA ECK,OWORO FTR S55: [EEF-151

Eg%h DWORD PTR DS: [<{&MSUBUMEE.

RETH
MOW EQK, OWORDC FTR S5: [EEP+2]

PUSH ER=

MOL EQG, OWORD PTR DS: [EAR]

CALL DWORD PTR DS: LEDR+E]

! ER:, OWORD PTR S5:[EBP-41
EE?.DMDRD PTR 55:[EEF-141

ESI
OWORD FTR F5:[A1,ECH

As you can see, there are no helpful strings, no recognizable API calls.

ubaEHceDtHandler)

-Ba4ailsa

__wbalbjSet -]

whaHresu LtCheckObix]
__wbaFreelbj>]

__wbaFreslbix]

SE handler installation

kerne 32.BaseThreadIn it Thunk

kernelZ2.BaseThreadInitThunk

kernel22.BaseThreadInitThunk
kernel3z. BaseThreadInltThunk

mswbumeE. __wbalb j
kerne 22, BaseThreadInltThunk

kernelZ2.BaseThreadIn it Thunk
msvbumEd._ wbaHresu LtCheck Obg

msvbumEE. _ wbaFreelbj

mevbumed. _ wbaFreslbj
RET used &g 3 Jjump to BE483299

kernelZ2.BaseThreadInitThunk

kerne |22, 7E1B2290
kerne |32, 7E1B229A

Before we look at the tools at our disposal, let's see what the basic file structure of a VB executable is. |
have loaded CrackmeVB1.exe, which is compiled in P-code. Scrolling to the top of the code in the
disassembly view, we see the list of functions in the binary:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/3.jpg
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/4.jpg

This is a reference for the runtime for the API calls that will be needed when the program is run.

Scrolling down a little we come to the jump table. This is similar to the jump table seen in most windows
binaries and is there to help with code relocation:

After this, we come to a vast sea of data. This is where the VB binary stores it's resources. Anything from
strings, to buttons, to callbacks are stored in here. One thing to note is that Visual Basic uses the actual
name of a callback; so if you want “MyButtonCallback” to handle the button event, that string will be used
to reference it. Because of this, you will see the various callback names embedded in this resource
section:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/5.jpg
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/6.jpg

The "About" callback

Scrolling down (much) further, we get to the actual event callbacks. These are the user generated callback
methods to handle the various events. As you can see, there is no documentation as to which callback
methods each is, though we will change this later with MAP files:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/7.jpg
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/8.jpg

Lastly we come to the Import Address Table, or IAT. We will get *much* more familiar with this in the
tutorials on unpacking:

FFFFF O FFFFFF
FFFFFFFE D FEFFPEFE

and that's pretty much it. Obviously, this isn’t a heck of a lot of information to work with. Fortunately, we
have a tool...

VB Decompiler is available in both a ‘Lite’ and ‘Pro’ version, the Lite version being free (and so, the one
included with this tutorial). VB Decompiler allows us to decompile Visual Basic code, that has been
converted into P-code, back into the original VB source code. Well, aimost anyway 8 . It also allows us to
view the resources embedded in the executable in a much friendlier format. Running VB Decompiler Lite,
we first see the main screen:

| VB Decompiler Lite v9.0
File Tools Plugins Help

FileMarme:

CObjects Tree:

Opening our first crackme, “CrackmeVB1.exe” and selecting the ‘Decompile’ button, we see the main
project:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/89.jpg
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/11.png

| v Decompler Lite vo.0 JNNNNNA (e |

File Tools Pluging Help

FileName: C:\Users\Random\Desktop\Random{Tutorials\Intra to Reverse Engineering\20 Working with VB Binaries [... | Decompile

Objects Tree: Mative Code

4 % Project
JJ Forms
= Forml
- Forma2
i) UserControls
4 Fi Code
».E] Forml

Type=EXE
Reference=*G]
Form=Forml.frm
Module=Modulel; Modul
Module=Module2; Modul
Form=Form2.frm
Startup="Forml™
IconForm="Forml™
HelpFile=""

g Modulel
edu ExeName32="andre"

¥ -E] Module2 Name="Progettol™

-E] Form2 Title="andre"
VersionCompanylName="2"
MajorVer=1

MinorVer=0
RevisionVer=C0
Command32 = ""
HelpContextID = "0"
CompatibleMode = ™0™
AutoIncrementVer = O
ServerSupportFiles = 0
CompilationIype = 0
OptimizationType = O
FavorPentiumPro(tm) = 0
CodeViewDebugInfo = 0
NoRliasing = O
BoundsCheck = 0
OverflowCheck = -1
FlPointCheck = O
FDIVCheck = ([
UnroundedFE = 0
StartMode = 0
Unattended = 0
Retained = 0
ThreadPerObject = 0
MaxNumberOfThreads = 1

[MS Transaction Serwver]
AutcRefresh = 1

[VB Decompiler]
Build = 5.0.457%

Decompiled OK

Most of this information is unimportant- mostly just file attributes etc. Notice, though, that in the project tree
(under the ‘Forms’ folder) there are two forms, form1 and Form2. These are the resources associated with
each form. Because there are two, we know that this application actually has two forms; One the main
window and, in this case, one an about screen. Running that app confirms this:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/21.png

Form 1- Main Screen

You will also notice two additional things when running this target; The about screen is in a different
language, and you cannot click the “OK” button in the about screen. If any of you have followed my
tutorials on modifying binaries, you will know that, of course, this is my favorite thing about this crackme &

If you double click on “Form2" in the “Forms” folder (in the project tree of VB Decompiler) we will see the
various resources, along with attributes, for Form2:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/317.png

| VB Decompiler Lite v

File Tools Pluging Help

n{Tutorials\Intro to Reverse Engineering'20 |_

Native Code

Forml

Modulel MaxButton =

MinButton

lientTop =

lientWidth
ClientHeight
ShowInT

TabIndex
Default = -1 '"True

in Label Labell
aption = "For

Height E
TabIndex
End
End

Attribute VE Name = "Formz2"™

Decompiled OK

Here we can see that there is one button with the text “OK”, one label with the text in a different language,
and one callback method for the “OK” button event called “Command1”.

Double clicking on Form1 brings up the main window’s attributes:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/31.png

File Tools Help

FileM ame: |E:\User&'\Handnm\Desktop'\Handnm'\TutoriaIs\Intro to Reverse Engineeringh20 Warking with‘| [Decampile |

Objects Tree: Interface;

3 StartUpPosition = 'Windows Default
iﬂ_j Forms Begin VB_TextBox Text?
[Forml Left = 1440

Top = 1920

Width = 2775

-4 UserControls Height = 285

- B Code LRSS S & Message Boxes

-] Forml ;nd.
Begin VB.TextBox Textl

-F] Modulel Left = 1440
-1 Module2 Top = 1440

_[F] Form2 Width = 2775

F] API Seiane ~ 2% | "Check!” button callback name

End d".;-'
Begin VB.CommandButton CommandZ

Caption = "&Check!™
Left = TZ0
Top = Z400
Width = 1215 "Check!” button
Height = 375
TabIndex = Z
End
Begin VB.CommandButton Commandl
Caption = "&bhbout™
Left = ZBE80
Top = 2400
Width = 1335 " e
Heiohe = 275 About” button
TabIndex = 1
End
Begin VEB.Lzbel LabelZ
Caption = "Serisl:"
Index = 1
Left = 380
Top = 1320
Hidth = 855
Height = Z55
TabIndex = &
BackS5tyle = 0 "Transparent
End TextBoxes
Begin VB.Lzbel LabelZ
Caption = "Name:"
Index = 0
Left = 380
Top = 1440
Width = 855
Height = 255
TabIndex = 5
BackS5tyle = 0 '"Transparent Label
End
Begin VB ._Lzbkel Labell
Caption = "Whoewver tries this out and never solwves it

- STowInISSRDEL — T TEz==
—--‘% Project -

means it's a big loser.. .. this jisn't a big deal, so u
must do that before doing anything else... if u don't
menage to solve it... go and hide yourself for ewver and
ever! REmen_"

Left = 3&0

Top = 3e0

Decompiling OK

Now we know several important things about this crackme; the important button is called “Check!” and has
a callback method with the name of “Command2”, and Form1 is the main form we want to concern
ourselves with. If you look down the tree, under the “Code” node, you will see the code that corresponds
with the various forms. Opening the ‘Form1’ tree, we see that there are five callbacks, one for the “Checkit”
button (Command2_Click_402FDO0) and others for other buttons and mouse movements. If you run the
target, you will see that the mouse movements callback is to change the color of the text when you hover
over it.

What we want is Command2, as that's our callback:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/510.png

J{ VB Decompiler Lite vo.

File Tools Plugins Help

{Tutorials\Intro to R

Hative Code

xceptHandler

seMove 403140
rmmandl_Click 402F40

c_00402FF2 r 110h
loc 00402FF9: i
loc 00402FFC

loc 0O0402FFE: and x, 00000001h

Decompiled OK

s

Double clicking on this shows us the actual assembly code...

The important thing about this screen is the address of the callback. All we really wanted to use VB
Decompiler for (in this case) is to find the address of the callback for the “Checkit” button, which we can
see is 402FD0. Going to this address in Olly (with the target loaded) shows us the beginning of the
callback function:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/52.png

@ CPU - main thread, module CrackmeV
BEGB2F CE THOF

i s cor =] Beginning of calback

ga4e2F01 | . MOU EBP.ESF
ga48=F0z | . S3EC &c SUE ESP,EC

Ba482F0s &8 RS1l48088 FUSH <JHMP. &MSUEUMER. wbaExceptHandler: SE handler installation
Ba482FOE £4:A1 BoEEEEEE | MOV ERR,DWORD FTR FS: (@]
BA4EZFEL | . BB FPUSH ERX Crackmnel). BA4E246A
EE4EZFEZ | . 6418925 BEEEEEEI MOV DWORD PTR FS:[@1,ESP

BR4EZFES | . EC 74 SUE ESP, 74
BRA4EZFEC | . B3 FLISH EBX
Ba482FED | . PLISH ESI
BA482FEE | . H_EOI

Ba482FEF | . F4 MOU DWORD PTR SS5:[CEEF-CI1,ESP

Ga482FFz | . la11406 DWORD PTR S5: CEEP-21, Crackmel). BE481118
Ba482FF2 | . B3 MOU ESI.DWORD PTR S5: [EEF+21

Ba482FFC | . ER:L,ESI

Ba482FFE | . a1 ER=x, 1

BE4E2EE 1 FC DWORD FTR S5: CEEF=41, ERX Crackmnel), BA43248R
BE4E3EES FE ESI,FFFFFFFE

BRA4EZAET | . FPUSH ESI

BR4EZARS | . a2 MOU DWORD PTR SS5: [EBF+21,ESI
BR4EZAEE | . MOU ECA,OWORD PTR O:5: [ESI]
BA4A2AED | . =53 CALL DWORD PTR DSz [ECK+41
aa4a3a18 | . AOR ERR,ERX Crackmnel). BA48248R
@a4aza12 | . 055 OC LER EDX,OWORD FTR S5: [EEF-241
Ga4626815 | . BB 84000280 MOU EBX, S0E20004

Ga462810 | . BF BROE000E MOU EDI, 5A
Ga4a3a1F | . 8945 DC MOU OWORD PTR S5: [EEF=241.ERX Crackmnel), BA452480
ga4a3622 | . PUSH EQK MSUBUMGE, F2953E22
ga483823 | . MOU DWORD FTR =S5:[EEF-341.ERX Crackmel), BA43248H
ga483826 | . MOU DWORD FTR =5: [EEF-441.ERX Crackmel). BA48248R
BE4E3E27 MOY DWORD FTR =5: [EEF-1C1.EEX

AE4ASAZC | . MOU OWORD PTR SS5: [EEP-241.E01

If you set a BP here, run the target, and enter a username and serial, you will see that, after clicking the
“Checkit” button, Olly pauses at our callback. We have now found our main registration callback code!!!

| wanted to show what the actual P-code looks like, and for that we need VB Decompiler Pro.
Unfortunately, this application requires that you buy it (... §8 ...) to use this function. Looking at the same
code in VB Decompiler Pro looks like this:

[E=rEe

File Tools Pluging Help

FileName: |E:\User&\Handnm\Desktop\H andom’ T utanialz'Intro to Reverse Engineering 20 Working with VB Binanes\CrackmevB1.exe | |:| Decompile ‘

Objects Tree: Native Code | Parse stack parameters | Procedure analyzer and optimizer

— |
~

_% Project Frivate Sub Command? Click({) '402FD0
i —.,:l ENnS loc 00402FF2: wvar & = 110
loc_0040302%9: wvar_ 1C
loc_0040302C: wvar_24 =
loc 00403035: wvar 78 =
-1 UserControls loc_0040303B: var 2C
Code loc 0040303F: var_ 34
loc_00403048: wvar TC
loc_0040304E: wvar_3C
B Form_MouseM.we_elUBlalU lnc:00403054: var:M =
Commandl_Click 402F40 loc 004030R2: Var Ret 1=RGE(CInt(CInt(CInt (ECInt(:StkVarl)))),Me,esi)
-# Command?_Click_402FD0 loc_004030RR: Me.BackColor = Var Ret 1
- # Labell_ MouseMove 403200 loc_004030D%: Proc 00403800 (var_34, war_44, var 24)
% ShowAboutBox_402E60 loc 004030E1l: If Proc_00403800 (var_34, wvar_44, wvar 24) <> 0 Then GoTo loc 004030ES
loc 004030E3: Proc 004032C0(Proc 00403800 (var 34, war 44, war 24), edx, ecx)
" AEniEl / loc 004030E8: var 4 = 0 - - - -
+E] Medule2 loc 004030F5: GoTo loc 0040310F
+-E] Form2 loc_0040310E: Exit Sub
: loc 0040310F: Exit Sub
End Sub

e[[=] «

| Decompiled CE

L

Here, we can see the actual P-code method for the callback. First, several variables are set up. The
background is changed at 4030A2, a procedure is called at 4030D9 (and it looks pretty interesting), and
then what is probably our magic compare/jump is performed at address 4030E1. We can see that if the
results of calling the procedure at 403800 are true, we will then jump to 4030ES8. If not, we will fall through
and perform the instructions beginning at address 4030E2. Taking a little time, we could actually find the
patch this way, though | personally like going back to Olly to do it, as it doesn’t hurt my brain so much.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/6.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/7.png

Going to address 402FDO, the beginning of the callback, we can see the actual code:

Beginning of callback

dInitThunk

dInitThunk

dInitThunk

Setting a BP here and restarting the target, then stepping down some, we see at address 4030AA the
background of the window changes color, just as we suspected from the P-code:

At address 4030E3, we see the badboy message pop up:

o
=

worse than

Looking at that area of code, we can see that right before it is a compare/jump combo:

LL DWORD FTR [
WORD FTR
ORD FTR

FTR

Badboy called

Let's set a BP at address 4030E1, restart the target, and see if that's the check. When Olly pauses,

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/10.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/111.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/13.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/23.png

changing the zero flag forces the jump at address 4030E1. Unfortunately, this doesn’t display anything.
This means we want to take a closer look at the call to address 4032C0 at address 4030E3. Placing a BP
here, restarting the target, and stepping in, we see the main decryption routine:

14FFFFFE
B4FFFFFF
F4FEFFFF
E4FEFFFF
C4FEFFFF
E4FEFFFF
_R4FEFFFF

aFR
aFR
aR,
ak
=1
aF,
aR
aR
aR
R
R
=R
=R
=R
aFR
aR,
ak
=1
aF,
aF,

As we will see shortly, there are some very standard method calls in VB that should be memorized.
Scrolling down the code, we see one of these at address 403644:

S4FFFFFF

vbaVarTstEq is like StrCmp in native code- it checks two entities to see if they match. Highlighting the call
down three lines at address 40364F and clicking “Enter”, Olly follows the call and we see we’re on the right
track:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/33.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/43.png

did it. I won't atulate with

allarDup

So we know we must make the code execute to address 403644. Looking above this at the various jumps,
we find the following JE at address 40344F:

Jumps to here

So let’s place a BP at address 40344F, run the target, and change the zero flag to force the jump:

We land here after
forcing the jump

Now, stepping down to the JE instruction at 40364D, we obviously want to stop this from jumping over our
call to the goodboy. Changing the zero flag when we land here, we see that we have in fact cracked the
target:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/54.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/63.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/72.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/8.png

‘ou did it. [won't congratulate with |
shame it too

As stated earlier, there are some methods that are called a lot when looking at protection schemes:

9 out of 10 times, one of these routines will be used to compare a serial with the correct one. One of these,
_vbaVarTstEq, was used in the previous crackme.

Go ahead and load CrackmeVB2.exe into Olly. Performing a search of intermodular calls, we see one of
our suspicious calls:

Here we see the call to _vbaStrCmp. Looking up the String.Compare method call in the Visual Basic API,
we see that it takes two strings as arguments and returns an int. The return value is either -1, 0 (for equals)
and 1, depending on if the first is greater than or less than the second, or zero if they are equal. This is
what the call looks like in VB:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/9.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/22.png

Functicn Compare (

Dim
Dim
Dim

strB)

Let’s set a BP on this line and run the target:

[#7acovora

ntdll.
ly}

UNICODE "
M

Looking down a little bit at address 40340, we see our wonderful compare/jump instruction. Stepping
down to there and changing the zero flag, then running the target, we see that this was our simplest crack

yet & :

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/32.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/42.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/53.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/62.png

frozenlce

There is a lot to take in here, but the most important thing is to mess around some on your own and
discover how this stuff works on your own. | have included a crackme that we will be going over in the next
tutorial (crackmeVB3.exe), so that you may try your hand at it. Following the same steps in this tutorial will
solve this crackme as well.

In the next tutorial we will go over Smartcheck and the Point-H method, as well as creating MAP files.
-Till next time

R4ndom

http://thelegendofrandom.com/blog/wp-content/uploads/2012/09/71.png
Random
Rectangle

	thelegendofrandom.com
	R4ndom’s Tutorial #20A: Working With Visual Basic Binaries, Pt. 1 « The Legend Of Random

