
R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1603[8/22/2012 3:17:57 PM]

R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints
by R4ndom on Aug.22, 2012, under Beginner, Reverse Engineering, Tutorials

Introduction

Time trials are limitations on an application where you only get a certain amount of days or tries before the
app stops working. Usually, an application will give you 30 days to try it, after which, it will be disabled.
Sometimes, while cracking an application, it is worthwhile to reverse engineer the time trial code as it’s
easier to find the registration process when the app is still in trial mode. Also, if you’re lazy, you can simple
patch the time trial code and nothing else, giving yourself unlimited time to ‘try’ the app.

For this tutorial, in order to protect author’s and their work, I have downloaded the worst reviewed “file
hider” on CNET. Out of 1300 programs of this type, this program was rated dead last. It has been
downloaded twice. I believe that the author has stopped any support of it. The name of the app is
appropriately named “Secure Data – Hide a File into an Image.exe”. I have shortened the name to
“SecureData.exe” just to save myself the typing. I have also not included all of the DLLs for this app, so it
will not work completely, but will be fine for this tutorial (How’s that, teddy Rodgers?).

Loading the app

Running the app we immediately see the time trial:

Yours will probably have a different number of runs available to you as I couldn’t remember how many was
default with this app Clicking OK and we come to the main screen:

The Legend Of Random
Programming and Reverse Engineering

Login

 Remember me

Recover password

Recent Posts

R4ndom’s Tutorial #18: Time Trials and
Memory Breakpoints

First Challenge Winner!

The ULTIMATE Cracker’s Tool

(Weekly?) Crackme Challenges with
Prizes*

The Man, The Legend, Me

Recent Comments

R4ndom on R4ndom’s Tutorial #16C:
Bruteforcing

zenta on New Tutorial on Bypassing a
Serial Check in Delphi by Xor06

zenta on R4ndom’s Tutorial #16C:
Bruteforcing

zenta on The Man, The Legend, Me

R4ndom on New Tut on Patching Using
Bitmaps by XOR06

Archives

August 2012

July 2012

June 2012

May 2012

Categories
Beginner

Challenges

Intermediate

Random's Ramblings

Reverse Engineering

Tools

Tutorials

Uncategorized

Home Tutorials Tools Contact Forum Challenges

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/114.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
http://thelegendofrandom.com/blog/challenges
Random
Rectangle

R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1603[8/22/2012 3:17:57 PM]

Clicking the “About” guy with no face we see:

and typing in a key we get the message:

RSS Feed

Meta

Register

Log in

Entries RSS

Comments RSS

WordPress.org

Subscribe

Enter your email to subscribe to future
updates

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/28.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/38.png
Random
Rectangle

R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1603[8/22/2012 3:17:57 PM]

We’ve seen enough. Let’s load the program in Olly:

Searching for strings, we find the message for the time trial nag screen:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/47.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/56.png

R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1603[8/22/2012 3:17:57 PM]

Though, we don’t see any strings for the registration screen.

***One thing that is important to keep in mind is that every string in an app that will be used is not always
in memory all the time. If the author of a program has put any effort into protecting the app, most important
strings will not be decrypted until they need to be used. This is obviously the case here; when the
registration screen needs the strings to tell the user that the key was wrong, those strings will be decrypted
at that time. Later in the tutorial, we will see that this list of strings will change dramatically, and a whole
new set of strings will be present in memory. ***

The Time Trial

The important thing for a reverse engineer to know about time trials is that the app MUST remember the
amount of tries/days left after quitting and restarting the program. That means that certain data has to be
stored persistently somewhere. The most obvious candidates for storing this data are the registry and a file
on the hard drive.

Most of the time, this data is not altered, as it is a common misconception among application writers that
someone will not want to go through the trouble of finding it (I guess…). Unfortunately for them, it is usually
very easy to find this data. The easiest way is to look at the strings and search for either a registration
path or a file path. These stick out like a sore thumb in the strings window. A registry path looks like this:

Software\\AppName\\Key

while a file path looks like this:

AppName\DataFileName.ini or AppName\DataFileName.dat

and many times will have something like %WINDOWS% in the name around it, pointing to the Windows
install directory.

You can also use Search for all intermodular calls, as long as the app is not too large. You will either
notice the CreateFileExA type method calls, or the RegSetValueExA type calls, depending on whether the
app stores the data on disk or in the registry. Unfortunately, this app has both as it creates files on the
drive to hide other files.

Looking in the strings window again we find a reference to a registry key:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/66.png

R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1603[8/22/2012 3:17:57 PM]

I will not go into a full detailed explanation of the registry. The info you need to know is that the registry is a
normal file-tree structured database and you access it by using regedit (built into Windows). To run regedit,
simply open a run prompt (WindowsKey-R) and type in “regedit”:

Here, we can see the top 5 folders of the registry:

Our string does not contain the top root key in it, so opening each one of these folders, opening the
“Software” key and looking for the “Windows Data Count” folder reveals it in the HKEY_LOCAL_MACHINE
folder:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/75.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/85.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/95.png

R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1603[8/22/2012 3:17:57 PM]

We can see on the left that the “data flag” key has a value of 7 (in my case- in yours it will be different).
This looks very suspicious. Let’s change it and see what happens. Right-click on it and choose “Modify”.
Enter a value of 100, making sure the decimal flag is on, and save it:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/104.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/115.png

R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1603[8/22/2012 3:17:57 PM]

Now run the app:

Well, that’s a little easier to deal with .

Investigating the Binary

Another way we could deal with the time trial is to patch the code. This would be better as we would have
to change the registry every time we used the app more than 256 times (0xFF is the largest number we
could enter into that registry key without it taking 2 bytes, and crashing the app). Remember, when we first
searched for strings we saw the string with the message that we had X amount of tries left. Let’s go there
and see what it looks like. First, we see the text being loaded at address 406078 (actually, a pointer to the
text would be more correct):

Looking at this in a more big picture way, we can see that this is a routine in a Windows callback for when
the WM_INITDIALOG message comes through:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/123.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/133.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/143.png

R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1603[8/22/2012 3:17:57 PM]

The first thing it does is load a handle to a Windows control with an ID of 0x41D (1053) to be passed to the
GetDlgItem API. Looking in Resource Hacker, we can see that ID 1053 corresponds to the text in the initial
time trial nag dialog box:

Looking up GetDlgItem in the API help we see that this routine returns a handle to the Windows control in
EAX. Setting a BP at address 40604C (the PUSH 41D instruction) and re-starting the app, then stepping
down to this instruction, we see that the return value is 0x3E4 and is stored in EDI:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/126.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/215.png

R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1603[8/22/2012 3:17:57 PM]

The next statement loads the contents of address 418FC4 onto the stack at ESP+C. Following this
constant in the dump, we see that that address stores another address, 403980, which if you follow, you
will see is a callback. We can assume that this is the callback for the dialog box (for example, when you
press OK):

The next two lines load zeroes onto the stack (obviously initializing some local variables that will be used
in the call) and then loads a very suspicious value into EAX from memory location 41E084:

Now, the reason I know it’s suspicious is because this happens to be the exact value for the number of
trials I have left (yours will be different). If you now restarted the app, this value would be one less, as
you’ve used one of your trials. So here we can assume that this address, 41E084, stores the number of
trials we have left. That is very helpful to know .

Finally, the target loads this value, as well as a pointer to the string, onto the stack and then makes a call.
The reason for this call (at address 406082) is to check the value for the number of trials left (is it less than
zero?) and to insert it into the string. You may have noticed that the string does not contain a value:

For you that have programming experience, you will recognize this as a printf type expression:

printf(“My IQ is a whopping %d”, 18);

Where the “%d” will be replaced with the decimal at the end of the expression. This call is doing the same
thing. Since the number of trials is dynamic, we must create a generic string and then insert the actual
number at runtime. Stepping past the call, we can see that it inserted the value into the string:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/127.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/128.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/129.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/130.png

R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1603[8/22/2012 3:17:57 PM]

Now we know for sure that the address listed above does in fact contain the number of trials left…
Finishing up this area of code, the time trial nag is simply displayed and waits for our clicking the OK
button.

Patching the Target

Your first thought may be, “Why not just change the moving of the contents of that memory location (the
one that has the number of trials left) from loading the number of trials left, to moving an arbitrary large
number?” For example, why not change this instruction at address 406072:

MOV EAX, DWORD PTR DS:[41E084]

to this:

MOV EAX, 99

The reason is because all this would do is change the dialog…the actual check of the number of trials left
is not bypassed. Therefore, when the number of trials is lower than 1, the app will stop working (even
though the dialog will say we have 99 trials left). So what we have to do is find where the target loads this
value from the registry and stores it into this variable.

The solution to this is to place a hardware breakpoint on this memory location, telling Olly to pause
whenever a new value is stored in it. The first step is to follow this address in the dump:

Then, in the dump, we want to place a hardware breakpoint on this location, pausing whenever a new
value is written to it:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/135.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/136.png

R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1603[8/22/2012 3:17:57 PM]

You can see that I have 6 trials left. We chose byte because that’s the length of this variable. Now we
have a HBP whenever there is a new value written to it.

Re-start the app now. Olly will break on our hardware breakpoint (HBP). You can tell by looking at the
bottom of the Olly window:

Let’s take a look at where we stopped:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/137.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/138.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/139.png

R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1603[8/22/2012 3:17:57 PM]

At the top of the screen (in code prior to our breaking) we see where the registry value is pulled from the
Windows Data Count folder (RegCreateKeyExW is used to not only create a key, but to open one as well).
The target then does some processing on it at around address 405A7E, checking if the returned value is
zero (meaning the target is not allowed to access the registry) and jumping to a badboy if it is (at 405B2F –
telling us we need administrator privileges to access this key). If there’s no error, the call at 405A96
actually loads in the value from that key, returning it in ESP+C (which will become ESP+8 after the return):

*** I have commented this code if you wish to investigate it further. ***

We then load the returned value into our variable at address 405AAD (my current value is 6). This is one
instruction before we paused in Olly:

Finally, we check for some strange values, then close the key and return:

So the question becomes, where is the best place to patch the binary? Tracing back through the code, at
address 405AAD the value that was received from the registry is stored into the memory location to check
later on for the number of trials. Nothing has happened yet (no modifications) to this value- it has simply
been loaded from the registry and stored here. The problem is, if you try patching this to something like
MOV DWORD PTR DS:[41E084], FF, the code will be screwed up (it will delete the next two instructions):

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/146.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/140.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/145.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/217.png

R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1603[8/22/2012 3:17:57 PM]

No tags

So, let’s patch the previous instruction at 405A9F, where EAX is loaded with the returned number of trials:

And we can see, after stepping over it, that our variable now contains 0xFF instead of the real number of
trials left:

Go ahead and run the app:

You will obviously have to save the patch. If you don’t know how, please see my previous tutorials. Once
you do, you will always have 255 tries left, no matter how many times you run it.

Conclusion

Obviously, removing the nag altogether is a far better solution to this app, but I wanted to go over trials
specifically for two reasons; 1) It’s good to know how they work and to recognize them as they will lead
you to the actual protection scheme, and 2) because sometimes you cannot crack an app, and this is the
next best thing .

BONUS QUESTION: What are those strange looking checks for starting at address 405B08? And what is
the check against 0×140 at address 405AA5 for?

-Till next time

R4ndom

Leave a Reply

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/149.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/314.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/150.png

	thelegendofrandom.com
	R4ndom’s Tutorial #18: Time Trials and Memory Breakpoints « The Legend Of Random

