The Legend Of Random |

Programming and Reverse Engineering

Home Tutorials Tools Contact Forum

R4ndom’s Tutorial #17: Working With Delphi Binaries

by R4ndom on Aug.08, 2012, under Beginner, Reverse Engineering, Tutorials

In this tutorial we will discuss working with binaries written in Delphi. Delphi binaries are quite different
then binaries written in other languages. You can generally tell a Delphi program by the numerous calls (far
more than a typical program) as well as some other techniques we will be discussing.

Included in the tutorial download are the two crackme’s, the Delphi Decompiler (DeDe), and ExelnfoPE,
available on the page.

You will also need Resource Hacker (and OllyDBG) available on the page.

Most program construction in Delphi is by using forms, which are basically just windows or dialog boxes.
You design them using a graphic utility to ‘paint’ the form, meaning to add buttons, edit boxes etc
wherever you would like them. Really, the only thing you need to do after that is let the Delphi compiler
know which actions you would like to handle and what you would like to do should that action happen. For
example, when a button is clicked, you may want to open a file dialog box. In this case you would let the
Delphi compiler know that the button should be associated with your code that you provide, and this code
simply opens the file dialog.

These forms, along with everything associated with them (strings, sizes, colors) are stored in resources, in
theory like a normal C++ application, but implemented far differently. One interesting thing is that Delphi
associates all of these resources by name, meaning that the name you called the specific resource is the
name that will be hard-coded into the executable, and the name that the executable will use to ‘look up’
resources. This is both good and bad. Good in that you can easily find these names that are associated
with resources. Bad in that they are all stored in one area and are not logically int3erwoven into the code,
so finding the code that goes along with a resource (say, a button click) is a lot tougher.

Much of the programming is done for you, other than, say, C++. There is a tremendous amount done
‘behind the scenes’ in a Delphi program. This is one reason the code looks different than what you may
expect.

One of the first questions you may have is, “How do | know that I'm dealing with a Delphi program?” After
a lot more experience, they stand out like a sore thumb, but until then, we are going to use a tool that will
help. Go ahead and run ExelnfoPE. This program is generally used to discover what packer has been
used on a packed binary (and we will use it a great deal when we get to packing). But, lucky for us, if the
program is not packed it also tells us what language the program was written in. When you first run
ExelnfoPE you will see the startup screen:

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle

gn 2011.07.29

Entry Point : EP Section :
First Bytes :
Uk

Lamer Info - Help Hint - Unpack info

Go ahead and load our first target, DelphiCrackme.exe into ExelnfoPE and you will see the various fields
populated (you can just drag the crackme icon and drop it into the ExelnfoPE window):

DelphiCrackme.ex
Entry Point : 0005¢
Fil et: 00057CD8
Linker Info @ 2,7
00066A00R Overlay : NO 00000000

Lamer Info - Help Hint - Unpa
Mot packed , try disassemble CllyDbg { www.ollydbg.de) or WD32dsm E]

Here we can see that ExelnfoPE has found that this binary was compiled in Delphi. Under that you cannot
also see that it is not packed. Also, just as a quick aside, as soon as you load the binary into Olly you will
see that you're dealing with something different:

De Lph

De Lph

You can tell it doesn't look like the typical apps we've been dealing with.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/1.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/2.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/3.png
Random
Rectangle

One of the most important differences, at least to a reverse engineer, of a Delphi program is the
resources. Loading up the DelphiCrackme into Resource Hacker, you should notice a new folder that is
not typically not there called RCDATA. Opening this folder shows us the resource sections associated with
this binary:

*** |f you do not have Resource Hacker you can download it from the page ***

% | Resource Hacker - C\Users\Random!\Deskiog

File Edit View Action Help
[Cursar

3 Cursor Group

Icon Group ont et = DEFAULT CHARSET
r wdowText

-

Generally, the most important sub-folder (resource sections) are the TFORM sections. These are the
windows/dialog boxes in the Delphi program. In this particular crackme, we can see that there is one form,
TFORML. Clicking on the little flower inside TFORM1 opens the main data area for this section in
Resource Hacker (as you can see above). This data tells you everything about the form; the size, the
colors, the placement on the screen, the title (caption), any fields or buttons it has in it- everything.

Usually, the first place | look is the ‘Caption’ as this tells you what will be in the title bar in the window. In
this case it's “Delphi — MsgBoxes”. The importance of this field is, in an app that has many forms called
TFORM1, TFORM2, TFORMS... it is difficult to know which form is associated with which window. Looking

http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/4.png

at the captions can help distinguish this. For example, the caption may say “Register” letting us know it's
the registration screen, or “About” for the about screen.

Finally, of importance to us is the button objects at the bottom. The reason these are important is because
we generally want to trap the program after a button has been hit, say, after hitting OK on the registration
screen after entering our username and serial. The important thing about the buttons is the button name
for the method when the button is clicked. In this case it's “Button1Click”. As | said earlier, Delphi programs
connect everything with ASCII names, so when the app wishes to run the code associated with clicking
this button, it will look up the name “Button1Clicked” to find the method.

From viewing this file in a resource viewer, we have gathered that there is one form (window) with one
button. The caption of he window is “Delphi — MsgBoxes” and the callback function that handles the click
of the button is called “Button1Click”.

Now let's move on to using one of the most important tools in dealing with Delphi programs...

Delphi Decompiler loads a Delphi program and breaks it down for you, showing all the forms data we've
seen, but also where all the methods are called, the address of all the methods, and the method names. It
also shows a complete decompilation of the binary if we wish, along with capabilities to modify it. Let's go
ahead and run DeDe. After a really kick-ass splash screen (if you're 9) we see the main window:

DeDe 3.50.02 (c) 1999-200.2 by DaFixe

File Dumpers Tools Options About

First, we need to load our program in so DeDe can decompile it. You can either select the open folder icon
or just drag our DelphiCrackme into the DeDe window and choose ‘Yes' to allow DeDe to begin
processing the binary. At this point, DeDe pops up a message box asking if the target has loaded:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/11.png

B " DeDe Target Loader

hen target is fully loaded

at the same time, it runs the target as we can see the target's main window appear:

Delphi - MsgB

Unregistered!

Sometimes, if there is a nag or splash that pops up at he beginning of running the target, you will want to
proceed to the main part of the program before telling DeDe to process the app. In this case, the target is
already fully loaded, so you can click the OK button and allow DeDe to proceed. deDe will then close the
target and ask if you want to perform more robust processing on the app:

DeDe Extended Analisys ..

Initial dump

Informatior

| usually choose no here, as clicking yes has never given me any more info that | need. DeDe will then
finish processing the target and the main window will be populated:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/21.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/31.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/5.png

DeDe 3.50.02 (c) 1999-2002 by DaFixe

File Dumpers Tools Options About

DelphiDialogboxE xample

Unitz Info Farms

Yersion:<unknown yersion>

00407 00
0040705

o411
00411

DeDe defaults to showing us the class info, as we can see by the “Classes Info” tab being depressed.
can scroll through the list if you like, but what we want is the “Forms” tab:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/6.png

[

DeDe 3.50.02 (c) 1999-2002 by DaFixei

File Options About
DelphiDialogboxE xample

; f DFM Edtor

Drelphi - §
ht =

DelphiDialogb

Here, we can see the info we saw in Resource Hacker; the attributes for the form. The reason | show you
this is so that in the future you can bypass the Resource Hacker step and just look at it in DeDe. Now click
on the “Procedures” tab. This is the most important tab in DeDe:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/8.png

DeDe 3.50.02 (c) 1999-2002 by DaFixe

File Dumpers Tools Options About

DelphiDialogboxE xample

DelphiDialogb

Here, DeDe shows us the method callback names and addresses for the TForm1 form. Since this is a very
simple program, there is only one button, and therefore, only one callback. BUT, the nice thing is we now
know the address of this callback- 457FOC. Remember that address! Now let’s load the crackme into Olly
and see what we can do...

If you do a search for strings you will see that you are our of luck:

Searching for intermodular calls also is a dead giveaway for a Delphi program:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/9.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/12.png

@ Found intermodular calls

A Di Ly

You will notice that Delphi makes A LOT of calls.

Normally, at this point, we would try to run the app and pause it on the bad boy message, but you will find
that this won’t work in this case because when you return, you will be about 15 layers down in calls, and
finding the actual code that handles the processing of the message box is almost impossible.

BUT, if we recall from DeDe, we know the address that is called when the button is clicked. It's 457F0C.
So let’s go check that address out in Olly:

Ahhhhh. That looks much better @ Let's place a BP at the beginning of this (457F0C) and run the app:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/22.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/32.png

*** Olly may give you a warning that you are setting a BP in a data section. Just ignore it. ***

| Celphi - MsgBoxes

MsgBox

Unregistered!

Notice it says we are unregistered. Also, notice the name in the title. “Delphi — MsgBoxes”. And there is
one button. All this should look familiar. Go ahead and press the button and Olly will break at our BP:

Delphi

Now it is just a matter of stepping the code and leading Olly the right way to display the good boy instead
of the bad boy. | don’t need to tell you how to do this. (If | do, please go back and re-read the tutorials in
this series.)

Registered!

In my quest to find targets that will not hurt anyone, the second app we will be looking at is freeware,
though it does have a nag that is displayed until you register the app. Registration is free. It was the least
downloaded app in the “tools” category on Cnet, with 4 downloads in the last year. It is a program called
Exif2htm. | have no idea what an exif file is, but apparently you can convert them into html files using this
program.

When we load the app into ExelnfoPE we see that it is in fact a Delphi program and not packed:

=Tl

exifzhtm.exe
Entry Point : 000AD44C oo [=] EPS : CODE [

File Offset: 0009FS4C FirstBytes: 55.88.EC.83.C¢ (-] [5)

Linker Info @ 2.7 BM : \Windows GUL [].—_B
File Size : DOOBECOOh Overlay: NO 00000000
Image is 32bit executable RES/OVL: 4/ 0 %
Borland Delphi (2.0 - 7.0) 1992 - www.borland.com E]

Lamer Info - Help Hint - Unpack info

Mot packed , try disassemble CllyDbg { www.ollydbg.de) or WD32dsm E]

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/41.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/51.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/61.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/13.png

Running the app, we can see the nag popup:

exif2htm

This i a shareware program, it means that you may try it free of charge, but if you like it and want to use it, you must buy it. You will not see this message anymare when you buy the
preduct.

Clicking OK we can see what took a graphic designer a long time to create such a colorful Ul:

ipt editar

(]

& Height 0 & []Ho

[M v [] Fant

Anyway, we can see itis UNREGISTERED at the top. Clicking “About” gives us the about screen:

if2htm

if2htm, version 1.07 (1 September 2008)
(c) 2005-2 ritum Software, Anatoliy Kovalenko

Web: http
E-mail: Jacritum,com

UMREGISTERED COPY!

and clicking “Register” on the bottom gives us the registration screen:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/23.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/33.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/42.png

Please restart E2H to check your reg info...

OK

Let’s load the app into DeDe and see what we can see. Make sure you click past the nag before hitting OK
for DeDe to proceed:

DeDe 3.50.02 (c) 1999-2002 by

File Dumpers Tools Options About

g Process exifZhtm

=

Infa Uritz Info Farmns
Yersion:D7

Unit [Fraani EIMFO]

0o
04

- | b rrar

Ready 7 sec. exif2htm.exe

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/52.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/62.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/71.png

Clicking on Forms gives us the forms window. Clicking on TForm1, we can see that this is probably the
main window:

I

—
DeDe 3.50.02 (c) 1999-2002 by DaFixe

File Dumpers Tools Options About

ﬂ Process exif2htm

DFM Editor

embden, bitdininize]

Lip ¥
TabOrder =

Ready 7 sec. exifZhtm.exe

We can also see a caption for Files, and if we look down farther, there are more for “save”, “print” and
“editor”. Clicking on TForm2 is far more interesting, though:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/81.png

[

DeDe 3.50.02 (c) 1999-2002 by DaFixel

File Options About

o Process exifZhtm

DFM Editor

So the caption is ‘Register’, we can see the labels for the edit boxes are ‘Name’ and ‘Code’, and we can
see two buttons at the bottom, ‘OK’, and ‘Cancel’. Let’s click on the “Procedures” tab and see what we've
got:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/91.png

exifZhtm

BitBtn1

Ready 7 sec. wifZhtrm.exe

Clicking on Unit2 — TForm2 we can see that there is one method, “BitBtn1Click”, which we saw in the
forms window corresponds with the “OK” button on the bottom of the registration window. We can also see
that DeDe shows the RVA of the address for this method. Something tells me that is going to be very
helpful here. Let’'s write down that address and load up the app in Olly.

This does not look like a very friendly binary in Olly:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/10.png

BB4HB451
Ba4[B452
BE4AE453
BE4AR4ET
BE4AR4ES
BE4AR4ED
Ba4AR4ER
Ba4AR45E
Ba4AR4E1
Ga4Aa452
Ga4AE453
Ba4AE454
Ba4AE455
Ba4AEdEE
Ga4aEdE 7
Ba4[E4ES
BE4AE4ED
Ba4AE4ER
BE4AR4EE
BE4AR4EF
BE4ARS TS
Ba4AR4 74
Ba4AE47S
Ba4AE47E
BE4AE477
Ba4[84 7B
Ba4[84 7 C
BE4[84 70
BE4AE4FE
BE4AESFF
BE4AR4L26E
BE4AE421
Ba4AR422
Ba4AR42E
Ba4AR4aT
Ba4Aa42E
Ga4aa420
Ba4R8420
BE4AE42E
Ba4[a42F
BE4AE433
BE4[E434
BE4AE4TE
BE4AR4ST
GE4AE430
BE4AE43E
BB4HB49F

BEARA L 26

20EE FC

2BE22 FoB2EEAG
E2_FAT7SFEFF
3370 FC @@
BFS4 SCoanoad
S0SE F&

SBS2 FCoO2008E
E2_&279FBFF
2370 FS \g

T4 7S

E2 a1

Al CCY241 686
EZ FHIFFEFF
SBFE

20EE F4
2BE22 FoB2EEEG
ES 4879FBFF

S F8
SBSZ FLOZoaes
EZ Z873FEBFF
2BEE FA

2BCE

EZ FE36F&FF
B2 FLO140A86
E2 BRIFF3FF
Al ZER04AG8

JHF 7 1 BAEEEG
DE F@

B
EglFEhtm.BB4HBEBC

EZ
g2

OB F&
JHFP OWORD PTR O5: [ECA+4R363C]
OB 2B

5]
ETiFEhtm.B@4ﬂ9?9C
SEiFEhtm.BB4H968C

@
B

i5
en if2htm. BE420423
E2

an
ETiFEhtm.BB4H9?D8
en if2htm. BRLASGEC
==

en if2htm. BE4IFERD

ST

JMP OWORD FTR O5: [ECH+4ASEEC]
OB EB

OB H@

OB B4

MOW ERK, EFR
FPUSH EEF
MOW EBP,ESP
WOR ECX,ECH
FUSH ECA

ESI
MOLY EBX, EHX
A0R EAK, EHX
PUSH EEF
PUSH exif2htm. B84AE1ES
FUSH DWORD PTR FS:[EAX]
MOW OWORD PTR FS2:[EARXI, ESP
LEA EDX, CLOCAL.11
MOW EAK, DWORD FTR DOS: [EBXK+2F2]
CALE exifzhtm.BA457A14
CHP ELOCAL.11,
JE_en if2htm. BB4AE130
LEA EDX. [LOCAL. 2]
FOU ERX,DWORD PTR DS: [EBX+2FCI
CALL exifzhtm.B8457A14
CHP ELOCAL.21, 5
JE SHORT ex ifZhtm.B04R8138
MOW DL, 1

MOW EAKX, DWORD FTR DS: [4172CC]
CALL enifzhtm.BA4ASFES
MOW ESI, EAX
LEA EDX, [LOCAL. 2]
MOW EAK, DWORD FTR DOS: [EBXK+2F2]
CALL exif2htm.BA45TA14
MOL ED, CLOCAL. 2]
MOL ERK.EST
MOW ECK, DWORD PTR DS: [EAK]
CALL DWORD PTR DS: [ECH+22]
LEA EDX. CLOCAL. 4]
MOU EAKX, DWORD FTR DZ: [EEX+ZFC]
CHLL ex LE2htm. 8845?914

U EDX.[C

HDU ECX.DNURD FTR DS: [EAX]
CALL DWORD PTR DS [ECH+321
MOW EDK, DWORD FTR DS: [4A9SFE]
MOW ED, OWORD PTR OS5z [EDK]
LEA ERX,[LOCAL.S]
MOU ECK, ex ifZhtm. BE4AE1 65
CALL exifzhtm.B8484300
MOL ED, CLOCAL. 51
MOL ERK,EST
MOU ECk, OWORD PTR DS: [EARX]
CALL DWORD PTR OZ: [ECK+74]
MOW ERKX,EST
CHLL et ifZhtm. BA4AS214

0L EAX, en if2htm. BE4AE1 7T
CHLL 4 L £Zhtm. BO4EE6ER
MOW EAK, DWORD FTR D5: [4AAD2E]

CHAR 'b*
en if2htm. BA4AABEC

CHAR ", '
CHAR "z*

en if2htm. BE4HABEC

kernel3z.BaseThreadInitThunk

kernel2z.BaseThreadInitThunk
kernel3z.BaseThreadInitThunk

kernel32.BaseThreadIn it Thunk

en ifzhtm. BA4ARCES

RSCII "reginfo.dat™

ASCII ™Please restart EZ2H to check gour reg info...”

Toward the end we can see the message that comes up telling us to restart he app to see if our
registration code worked. This is a technique used quite often, and it does provide a small challenge to us.
The problem is we don’t know if we typed in the right code until we restart, and the area that checks if it
was right could be anywhere in the program. We also can’t force our code to be right as we don’t know
where the instructions are that check if it's correct or not! But using a little common sense, you will see that
it's no that much harder to get past a protection like this.

The hint comes from the fact that, after you enter your code, the app must store it somewhere (or at least

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/14.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/24.png

store SOMETHING somewhere) so that when it restarts it can look and see if we stored the correct code in
or not. It could either store our entered name and code, or it could store a flag that we are registered, or
any of a number of other things. The point is, though, it must store something.

There are only a couple places a program can store data from run to run of the app. Almost always it's the
registry or an ini file. So what we have to do is find out where this data is stored so that when we run the
app again we can find where this data is processed and checked for if we're registered or not.

We have our BP set, so let’s run the app in Olly. Click on Register, enter some fake data, and click OK.
Olly should break at our BP:

n UNREGISTERED

Register

Now let's look at the code where Olly broke. At first is a bunch of pushes that set up a bunch of variables
on the stack. We then push some varibles onto the stack and make a call at 4A0095. If you step over the
code (stopping at address 4A009A, you will see something interesting in the info window:

It appears it is doing something with our username. 99.99999999999999999% of the time this will be a
check to make sure we actually entered something into the edit text field in the registration window (usually
returning a length). The fact that EAX equals 6 on return helps support this hypothesis, though we don’t
know for sure. There is a check if EAX equals zero right after this and a jump. I'm sure you can guess
what that’s for. Slowly stepping over the next couple instructions, we then see our code pop up in the
window as well:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/34.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/43.png

What do you want to bet that this is doing the same thing on our code? EAX again is compared with zero
(it is 8 this time, which just happens to be the length of my code @) and jumps if itis zero. Next we pass a
couple more calls, each of which loads our name and code as arguments again. You can step over this
code until we get to the big red flag at address 4A0101:

DDIDDDDEDDDDD DD

This looks very important. It is a data file that looks like it is going to create. Stepping over the next two
lines brings us to address 4A010B:

EEEEAHER

What appears to be a file path is displayed in the info window. It points to the location | am currently
running the app from (my desktop). In this file path is the name of the dat file it looks like it's going to
create. Stepping a couple more times until you step over the call at 4A0112, you may notice a little
something pop up on your desktop:

reginfo.dat

Hmmm. That wasn't there before. My file has a Notepad++ icon because that's what I've associated .dat
files with- yours may look different. Let’s open this file and have a look (you can open it in any text editor):

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/53.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/63.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/72.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/82.png

File Edit Search View Enceding Language Settings Macre Run

Well, I think we found out where our info will be stored & We know that the app creates a file called
reginfo.dat in the same folder as the app is stored, and in this file is saved our entered name and code.
Now that we know how the program is going to check for if we are registered or not, we can use this to
find the code. Go in to Olly and do a search for strings and search for “reginfo.dat”. Mine came up with
two instances, the second of which was the area we were just looking at where the reginfo file was
created. The first looks very interesting though:

"
::h bz

A
A
0
i
i
i
i
:
"
d
A
A
A
A

Scrolling up, we can see that there are no conditional jumps, though below our BP we see several. Go
ahead and close the app (clicking run in Olly and clicking OK in the registry window and closing the app
through the app- not through Olly. We want to make sure all of the code that stores the registered info
get’s done). Now, right when we re-start the app we break at our new BP:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/92.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/101.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/111.png

Now lets single step to see what's going on...At the first conditional jump at address 49AC26 we do not
jump. This could be OK or it could be a potential place we want to patch, we don’t know yet, so let's keep
stepping. The next set of instructions loads our username and code from the data file and performs some
calls with it. This is looking much more likely. When we get to the next conditional jump, we see that we
are indeed going to jump:

= that wou may

I "™ UMREGISTERED"™ *——

This is not looking good. Continuing to step, we will eventually run the “Shareware” code, so we know we
have gone too far. Let's re-start the app and see what happens if we don’'t make that last jump.

*** You may wonder why | didn’t try patching the conditional jump at address 49AC26. The answer is, | did,
and we still got he bad boy message ***

Step until you get to the second conditional jump at address 49AC58:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/121.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/131.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/141.png

Now, let’s tell Olly not to jump by changing he zero flag and keep stepping through code. We will
eventually come to the last conditional jump at address 49AC78:

BE41C118

BE41C110

Aa41C118

Looking down where this jump jumps to we can see that it is the same destination as the previous jump. If
you want, you can step through it, though you will see that it is the same outcome, setting our app as
shareware. This tells us that this is a second check on our name/code pair. Let’'s keep Olly from jumping by

setting the zero flag again and keep going:

Now if you keep stepping, you will notice that nothing noticeable happens, so go ahead and run the app.
You will notice that our nag does not show and that the main window pops up. Also you will notice that
there is no UNREGISTERED text anymore:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/15.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/16.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/17.png

We have now forced the app to use whatever name and code have been entered! We have cracked the

app @

-Till next time

R4ndom

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/18.png
Random
Rectangle

	thelegendofrandom.com
	R4ndom’s Tutorial #17: Working With Delphi Binaries « The Legend Of Random

