—_—

The Legend Of Random |

Programming and Reverse Engineering

Home Tutorials Tools Contact Forum

R4ndom’s Tutorial #16C: Bruteforcing

by R4ndom on Aug.17, 2012, under Beginner, Reverse Engineering, Tutorials

Bruteforcing is a way to extract a serial (or password or whatever...) from a binary when you know the
input and output of a encryption/decryption routine, but perhaps do not know how, nor wish to spend the
time patching the software. It is the difference between cracked software coming with a patcher (or a copy
of the patched executable) and coming with a username/serial that works. If you've ever downloaded
cracked software and the person who cracked it includes a username/serial to crack it, they have probably
used bruteforcing.

The way it works is, knowing the input and output of the encryption/decryption routine, you try every
possibility that turns the input into the output until one matches. For example, if | enter a serial of
’12121212' and the app sends this into the decryption routine, and after the routine the app compares this
with “j6"gD7-L", we have the input as my serial and the output as that strange string. What we want to
find out is how the '12121212' was turned into ‘j6"*gD7-L’, and how we can enter our a serial that matches
what the program expected as output, in other words what serial to put in so the app successfully registers
us.

Keep in mind that this only works on binaries that user a username/serial in order to check the legitimacy
of registration. If the app queries a database online, this won't work.

All that being said, bruteforcing is not terribly difficult. One requirement is that you know at least one
programming language that you can make a bruteforcing program in.In this tutorial | will be discussing
mostly assembly language, as that's what we’re analyzing the crackme in. | am also including the main
brutforcing routine in a couple of other languages, including , S0 you can get a sense of doing it
in a higher-level language.

Another requirement is understanding how the username or serial (or both) is converted into the output.
The reason for this is that it cuts down on the amount of operation we must try. If | say we must turn the
password “SECRET” into the output “MESSAGE”, there are an infinite amount of ways. But if | say that the
only operations we can user are XORing the username with a certain value, well, that limits it a great deal.

Now we can begin talking specifically about our crackme. As always, you can download the relevant files
on the page. In this tutorial we will be dealing with the same crackme we previously used, as well
as our bruteforcing program.

As homework on the previous tutorial, | asked if you could decipher the various keys, and what
modifications the app was performing on each. Here itis filled out completely:

004012A9
004012AF
004012B5
004012BA
004012BE
004012C0
004012C6
004012C9
004012CB

004012D0
004012D4
004012D6
004012DC
004012DF
004012E1
004012E3

004012E8

004012F3

mov ecx, dword_403040
mov ebx, dword_40303C
mov %aé, dworg 40%038
ebp+ar
LRort |%c_101200
a ecx, 54Bh
imul ebx, eax
XOr eax, ecx
Jmp loc_4013E7

cm ebp+arg_0 2
jng gho?t |%E_1612E8
sub _ecx, 233h

imul ebx, 14h

add ecx, eax

and ebx, eax

Jmp loc_4013E7

cm ebp+arg_0 S
jng gho?t |%E_1012FD
add eax, 582h

imul ecx, 16h

; variable "a”
; variable "b*
; variable "c”
5 FFFF* Button

; ¢ += 54Bh
: 12

= a

;at=c¢

- *xkkx Button

-= 233h
*= 14h
+= a
&= a

; FFFF* Button

; a += 582h
; ¢ *= 16h

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle

004012F6

004012F8 j

004012FD
00401301
00401303
00401305
0040130B
0040130D

00401312
00401316

00401318 cdg
00401319

0040131B
0040131D
0040131F
00401324
00401328
0040132A
0040132C
0040132E
00401334

00401339

0040134C
00401351

00401362
00401367

00401376

00401378
0040137C

ebx, eax
loc_4013E7

p [ebp+arg_O

short tI)oc 161312
ebx, 111222h
ecx. eax
loc_4013E7

ebp+arg 0
gho?t |%c 161324

eax, ecx
loc_4013E7

ebp+arg 0
gho?t |%c 161339

ecx, 546879h
loc_4013E7

ebp+arg_0
gho?t |%c 101351
ecx, F

ebx

eax. 401000h
loc_4013E7

ebp+arg_0 8
gho?t 165 161367
eax, ecxXx

|mu| ebx, 14h
add ecx, 12589h

loc_4013E7

[ebp+arg_O]
short_loc 101378
eax, 542187h
ebx. eax

ecx

Short Ioc 4013E7

p [ebp+arg_O

short 10c_. 16138A

; ***** Button 4

;aé&=b
b

111222h
a

; ***** Button 5

, division rest --> (r)

; ***** Button

; a”=c¢

)
3’
B

b & a
c += 546879h

; FF*FF* Button

c ;= 25FF5h
a += 401000h

- *xkkx Button

;a”=c¢c

=

b 14h
c += 12589h

- Sxkkx Button

a 42187h
b
©

; ¥ Button 10

0040137E ctdg N
0040137F ; , division rest --> (r)
00401381 add ebx, edx : =

00401383 imul eax, edx

00401386 X ecx, edx

00401388 short loc_4013E7

0040138A
0040138E
00401390
00401396
0040139C
004013A1

004013A3
004013A7

; R Button 11

b += 1234FEh
c += 2345DEh
a += 9CA4439Bh

ebp+arg 0

gho?t 15c 1013A3
ebx, 1234FEh
ecx, 2345DEh
eax, 9CA4439Bh
short loc_4013E7
ebp+arg_0 0Ch ; ***** Button 12
gho?t |%c 16 13B2

004013A9 eax, ebx ; n

004013AB ebx, ecx ;

004013AD imul ecx, 12h ; 2h
004013B0 jmp short Ioc 4013E7

004013B2 cmp [ebp+arg 01 ; *¥**** Button 13
Jnz short 013C8
and eax, 12345678h ; a &= 12345678h
sub_ecx, 65875h ; € -= 65875h
imul ebx, = o == e

004013C6 short IOC 4013E7

004013C8 [ebp+arg_O

1 ; ***** Button 14
short Ioc 01 3DB

eax, 55555h a "= 55555
ebx. 587351h b -= 587351h

004013D9 short loc_4013E7

004013DB [ebp+arg_ ; *¥**** Button 15

01 OFh
short loc_4013E7
eax, ebx
ebx. ecx

004013E5 ecx, eax

*** Special thanks go out to figugeg! for doing most of this work for me in his tutorial (which | found after |
finished two of the three parts of this series g). ***

So, now we know what operations are performed by pressing each key. The next thing we need is the
inputs and outputs. These we already know- remember, the code in the self-modifying section started as
one thing- a group of gobbledygook, and was later XORed into legitimate instructions. They were XORed
with the three memory locations ‘@', ‘b’ and ‘c’. Therefore, the input is the code prior to being XORed, and
the outputs are the same locations after being XORed and modified against ‘a’, ‘b’ and ‘c’.

Address 401407 started as EB 3F 90 90 and became B9 B4 C5 9C after XORing with ‘@’
Address 40143B started as 04 66 E7 BB and became FF 75 0C 6A after XORing with ‘b’
Address 40143F started as 4D BD 08 8B and became 03 FF 75 08 after XORing with ‘c’

What we'’re eventually going to do is try every combination of these modifications, mimicking trying every
possible combination manually by clicking on the buttons. When, after performing 10 operations on a set,
we have the correct values in the three variables, we know we have the correct password.

The writer of this crackme also provided the first two characters of the password. They are '7" and '9". The

Random
Rectangle

reason for this is if you have a slow computer, it may take quite a while to go through all possible
combinations. | have a screaming fast computer with 8 cores and it took about an hour to crack the serial
starting with no characters known of the password. Starting with the 2 first characters known, it took about
a minute. Normally you wouldn’t have any characters (obviously) but seeing as this is not a tutorial on
patience, | included the first two characters in the source code.

Here is the C source code for the bruteforcer (the entire project for Visual Studio is in the download):

#include <iostream>
using namespace std;

void brute(void)

{

char finalAsciiSerial[11] = "";
int i, varA, varB, varC, tempVar, tempSerial[10];

// we know the first number is '7'
for (tempSerial[@] = 7; tempSerial[@] <= 7; tempSerial[0]++)

// and we know the second number is '9'
for (tempSerial[l] = 9; tempSerial[l] <= 9; tempSerial[1l]++)

for (tempSerial[2] = 1; tempSerial[2] <= 15; tempSerial[2]++)
for (tempSerial[3] = 1; tempSerial[3] <= 15; tempSerial[3]++)
for (tempSerial[4] = 1; tempSerial[4] <= 15; tempSerial[4]++)

cout << "."; // Update display
for (tempSerial[5] = 1; tempSerial[5] <= 15; tempSerial[5]++)

for (tempSerial[6] = 1; tempSerial[6] <= 15; tempSerial[6]++)
for (tempSerial[7] = 1; tempSerial[7] <= 15; tempSerial[7]++)
for (tempSerial[8] = 1; tempSerial[8] <= 15; tempSerial[8]++)
for (tempSerial[9] = 1; tempSerial[9] <= 15; tempSerial[9]++)

// Reset variables
varA = OXDEAD;
varB = OxDEAD;
varC = 0x42424242;

// Apply each digit
for (1 = 0; 1 < 10; i++)
{
switch (tempSerial[i])
{
case 1:
varC += 0x54B;
varB *= varA;
varA "= var(C;
break;

case 2:
varC = varC - 0x233 + varA;
varB = (varB * 0x14) & varA;
break;

case 3:
varA +=
varC *=
varB "=
break;

case 4:
varA &= varB;
varB -= 0x111222;
varC "= varA;
break;

case 5:
if (varC != 0) // Watch divide by
{
varB -= (varA % varC);
varA /= varC;
varA += var(C;

break;

case 6:
varA "= var(C;
varB &= varA;
varC += 0x546879;
break;

case 7:
varC -= Ox25FF5;

varB "= var(C;
varA += 0x401000;
break;

case 8:
varA "=
varB *=
varC +=
break;

case 9:
varA -= 0x542187;
varB -= varA;
varC "= varA;
break;

case 10:
if (varB != 0) // Watch divide by zero!
{
tempVar = varA % varB;
varA /= varB;
varB += tempVar;
varA *= tempVar;
varC "= tempVar;
}

break;

case 11:
varB += Ox1234FE;
varC += Ox2345DE;
varA += 0Ox9CA4439B;
break;

case 12:
varA "=
varB -=
varC *=
break;

case 13:
varA &= 0x12345678;
varC -= 0x65875;
varB *= varC;
break;

case 14:
varA "= 0x55555;
varB -= 0x587351;
break;

case 15:
varA +=
varB +=
varC +=
break;

}

// stop if serial equals proper values

if ((varA == @x9CC5B4B9)
&% (varB == OxD1EB13FB)
&8 (varC == Ox837D424E))

// Convert to ASCII
for (1 = 0; i < 10; i++)

if (tempSerial[i] <= 9)

finalAsciiSerial[i] tempSerial[i] + 0x30;

}

else

finalAsciiSerial[i] tempSerial[i] + 0x37;

}

cout << "\n\n***** Bpyteforced serial: ";
cout << finalAsciiSerial << "\n";
return;

}3II3IIIIYY

}

int main()

{
cout << "Bruteforcer by R4ndom\n\n";
brute();

cout << "\nBruteforcing done...\n";

return 0;

First, after setting up our variables, we cycle through each character of the password. The first and second
characters we know are '7" and '9’, but the others can be anywhere between 1 and 15 (1-F in hex). |
inserted a cout instruction that prints a dot after a certain amount of operations because | hate programs
that have no feedback. This gives us a growing string of dots so we know it has not crashed.

Next we perform the modifications on the variables depending on which key was pressed, just like the
modifications we showed above.

After each set of 10 modifications (as the password is 10 characters long) we check the three variables to
see if they are the same as the outputs we are looking for. If they are, we stop, convert the password string
to ASCII, and show it. If they don’t match, we continue on to the next permutation.

Here is the output from running the bruteforcer in a command window:

CAWindowshsystem32\cmd.e

wwxxx Bruteforced serial: 77DEGZ24C4B

Bruteforcing done...
Press any key to continue

We have now bruteforced our crackme...

-Till next time

R4ndom

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/124.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/125.png
Random
Rectangle

	thelegendofrandom.com
	R4ndom’s Tutorial #16C: Bruteforcing « The Legend Of Random

