The Legend Of Random

Programming and Reverse Engineering

Home Tutorials Tools Contact Forum

R4ndom’s Tutorial #16B: Self Modifying Code

R4ndom Beginner, Reverse Engineering, Tutorials

In part two of this three part series we will go over self-modifying code and will eventually crack this binary.
As promised, it will be challenging, but don’t worry if you don'’t get everything- a lot is specific to this binary
and you may never see again.

As always, the files you need are included with the download of this tutorial on the page.

Now that we've seen how the basic message handler callback works, let's see if we can use this to crack
this crackme. We can see that there are really only three messages that this app handles; 110
(INITDIALOG), 10 (DESTROY_WINDOW), and 111 (COMMAND). Any other messages are ignored.
We've already gone through the init dialog code, and we don't really care about the destroy window code,
as that’s only called when we close the app. Therefore, anything worth noting happens in the
WM_COMMAND section. So let's only pause Olly in that section. Remove any old BPs and set a new one
at address 40108e, or after the compare/jump for ID 111:

and run the app. You will notice that now if you move the mouse over the window, resize it, move it, or
anything that doesn't involve clicking a button, Olly continues to run, as all of these messages are ignored.
Now click on the first button, 1. Olly breaks at our BP. We can also see that the ARG.3 variable contains
65"

If we were to open our crackme in Resource Hacker (from last tutorial) and open up the main dialog, you
would see that 65 (or 101 in decimal) is the ID for the number ’1' button:

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/138.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/227.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://ge0-it.blogspot.co.uk/
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle

File Edit View Action Help

LANGUAGE LANG ENGLISH,
FONT 10, "M5 5

CONT
CONTR:

nee,
npw,

nEw,

"No hoo
"Clear™,
"Framel",
"Fram

STATIC,

_CENTER
“CENTER

_CENIER
_CENTER
_CENTER
_CENTER
_CENTER
_CENTER
_CENTER
_CENTER
_CENTER
_CENTER

5 CENTER | W3

| WS_TABSTICE
16

That is the ID that is in ARG.3! It is just the ID of the button. So we step down a couple lines and we see
the compares begin, comparing the ID sent in with this message with the ID’s hard coded into the app:

So, in the big picture, what this section is doing is checking the ID against all of the possible IDs, and when
it finds a match, it calls to a section of code that handles that particular button. Notice also that right before

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/320.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/420.png
http://thelegendofrandom.com/blog/feed
http://thelegendofrandom.com/blog/feed
http://thelegendofrandom.com/blog/wp-login.php?action=register
http://thelegendofrandom.com/blog/wp-login.php
http://thelegendofrandom.com/blog/feed
http://thelegendofrandom.com/blog/feed
http://thelegendofrandom.com/blog/comments/feed
http://thelegendofrandom.com/blog/comments/feed
http://wordpress.org/
Random
Rectangle

the call, a value is pushed onto the stack; 1 for 0x65, 2 for 0x66 etc. Since all of the calls are calling the
same location, obviously the code at this section will differentiate which button that was clicked by what
value is on the stack, again 1 for button 1, 2 for button 2 etc. So let’s single step until we perform the call,
step in, and see what we have:

Well now were into the meat of it! After setting up the stack we begin accessing the same memory
locations we accessed in the WM_INITDIALOG section, namely starting at address 403038. So let's open
that up in the dump so we have a frame of reference:

[pscir]
il

There’s our “DEAD” twice along with our 0x42s and the address 403000. Single stepping, we first move
the 42s into ECX, and the two OXDEADSs into EBX and EAX:

mmmmmmmmsa

Next, we do a series of compares to find out which button we pushed based on the value that was pushed
onto the stack. Here, SS:[EBP+8] is directly accessing this pushed value. Since we clicked the first button,
we will perform the first set of instructions:

**QOne thing you can note: the author actually went through more trouble than he had to. He could have
simply pushed the ARG.3 value which is the ID of the button and compared those IDs in this section, as
opposed to pushing another value onto the stack and comparing those. Who knows, maybe the author

assumed this was harder to read.***

The first thing we will do is add 0x54B to ECX (42424242) which gives us 4242478D. Next we multiply

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/58.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/69.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/79.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/89.png

EAX by EBX (which is OXDEAD times OxDEAD) which gives us C1B080E9. Finally, we XOR the ECX
register with the EAX register and jump to location 4013E7. Stepping over the jump lands us here:

Which is toward the end of this method. If you scroll back up and take a look, you will see that basically all
of the buttons do the same thing; they add a value, XOR a value and jump to the end. They just differ by
the values. Then here, at the end, we increment the contents of memory location 403044 (which started as
a zero), and we can assume this is some sort of counter. We then store our new values for ECX, EBX and
EAX back into the same memory we read them from. After returning, we come back to the main function:

Next we compare memory location 403048 (which is zero) with 3 (we don’t know why yet), then compare
our counter at address 403044 with 0x0A. Again, this indicates that 403044 contains a counter that counts
to OxO0A. We then jump if it's not equal to Ox0A, telling us that we will run through this loop 10 times before
we fall through. You may also have noticed the JNB at address 4011F9 that points to the brute-force
message. Obviously, location 403048 will have some sort of counter in it, and if it gets above 3 we will get
the brute-force message:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/99.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/109.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1113.png

#12 bw

Jumping into the call at 4010BA, we do the same thing we did the first time through, only this time 1) the
memory will not contain OXDEAD and 42424242, but instead will contain adjusted values and 2) since we
clicked on the second button, we will perform the code at address 4012D6 which performs a SUB ECX,
233 and IMUL EBX, EBX, 14 etc. We then jump to the end of the routine again:

Here, we increment the counter at 403044, move the new variables back into their memory locations and
return to our main loop. Stepping once jumps to the end of our main loop:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1210.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/140.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/236.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/324.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/422.png

SCII "An

where we compare 403048 (which is still zero) and jump to the brute force message if it's greater than 3.
We also compare 403044 with OA and jump to the error code if our ID is above this (can you figure out
why?). We then return from our main loop and return to the Windows loop that wait’s for us to do
something.

Now that we understand how the app works, let’s patch it. For this app, we need to use a little intuition. By
following through the entire flow of this app, we can see that there are not a lot of compare/jumps out of
the normal flow. Really, the only ones we see are the jump to the brute force message at address 4011F9,
a jump to the ‘about’ box if we fall all the way through all of the compares from address 4010B2 to 4011A6,
a jump to the ‘clear’ code that resets the memory locations back to OXDEAD and 42424242 at address
4011CA, and a fall through to the ‘error message’ at 401204. If you click the ‘about’ button and trace the
code, you will see that it only displays the about box and then returns to our main loop. Doing the same on
the ‘clear’ button does the same. So that leaves either the brute force code or the error code.

Now here’s where a little intuition comes in. Every time we checked the address 403048 to see if we
should jump to the brute force message, the contents were zero and the jump was never taken. However,
the compare at address 4011FB compares the counter at address 403044 and this will jump after reaching
0x0A. We also know that every time through the loop, the contents of 403044 were incremented, so we
can assume this counter ‘counts’ how many buttons we've pressed:

ORD PTR D
0RO PTR D
ORD FTR D

Of course your first thought will be ‘yeah, but, that code leads to an error message!”. But does it? All the
code does is load a pointer to a message that says there was an error, but is this displayed? Not in this
code...so maybe not at all. This section of code looks highly suspicious, so let’s trace through it. We know
that we get to this code by clicking at least OxOA (10) buttons. So let’s place a BP at address 401204, clear
our other breakpoints, and re-start the app (so we can count off 10 button presses):

Now, after clicking 10 buttons (I pressed the button number 1 10 times) we should break at our BP. First
there is a call to 40144C. Let’s step into that and see what it does:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/510.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/611.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/711.png

Hmm, this sets up and then calls VirtualProtect. After reading the info on VirtualProtect, you will see that it
is basically used to change the attributes of a section of memory. For example, the section of a binary that
contains the executable code has it’s attributes generally set to execute, but not to writeable, as there
really isn’t a lot of point of writing to the code section- that's what the data section is for. If you wanted to
change a part of the code section to ‘writable’ in addition to ‘executable’, you would use this function. Then
you could write to this memory section, in effect changing the code ‘on the fly’. This is how self-modifying
code works- it calls VirtualProtect on a section of memory in the code section, adds the ‘writable’ attribute,
changes the code (perhaps XORing it with a number) and then calls VirtualProtect again to change the
attributes back to executable only. Now, the code has been changed on the fly.

It appears that this app is doing something similar. The last argument to VirtualProtect is the memory
location you want to change the attributes for, and the third value is the length in bytes of the section you
want to alter. In this case we can see that the starting address is 401407 and the length is Ox1F4 (500).
We can also see that the second argument is PAGE_READWRITE, making this section writable as well as
readable. Let's look at this section of memory, starting at 401407, and see what is going to change:

adIn it Thunk

CHRR "&*

CHAR *E*

CHAR "&°

Hmmmmm. That looks really suspicious. It doesn’t look like code at all. Let's keep going and see what the
app changes in this section of memory. Step just past the call to VirtualProtect:

4K ERHEL
DWORD TR O5:
D PTR DSz L4

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/811.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/112.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1011.png

Now, the first thing we do is move the contents of memory location 403038 into EAX and XOR it with
memory location 401407, storing the result back into address 401407. Wait a minute! 401407 was the first
address of the memory section we changed the attributes for so that we could write to it. And 403038
began as OXDEAD but was changed depending on which buttons we pressed (and in what order). So this
sequence of instructions is changing that memory space based on what buttons and in which order they
were pressed. Step over until we get to the JNZ at address 401475 and then let’s look at address 401407:

Et
4
4
4
4
4
4
4
4
4
4
4
4
41
4
4
4
4
4
4
4

You will notice that address 401407 was changed and now has a valid instruction in it, a JECXZ SHORT
crackmel1.004013E5. The app just added a conditional jump to it's own code! The way it did this was by
changing the opcodes, or raw data, at that memory location. Going back to our current instruction, the next
thing it does is compare the first byte at 401407 with 0x52 and jumps if it is not equal (to address 40148F).
Looking at the above picture, we can see the opcode value at 401407 is “E3" which does not equal 52, so
we will jump. The jump is to another setup and call of VirtualProtect, this time locking that section of
memory back to executable:

L3 1AEE
8848{4?5
A

but before this you may have noticed that memory location 401407 was XOR’ed again at address 40148F.
Looking again at address 401407 we see that it was changed again:

So now we have a JMP instead of a JECXZ. So in effect, the app just changed it's own memory twice,
once to be a JECXZ and the second time to be a JMP. Stepping again we return back to our main loop:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/27.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1212.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/37.png

#12 by De

We then push a value (FO8E2) into the stack and call another routine at address 401403. stepping in we
see that function:

Well, well, well. we have jumped to the area of memory that the app changed. We recognize the new JMP
at address 401407. Let's step onto the jump and see where we go:

Odd, itis jumping to a return. So it appears this didn’t really do anything. We are now back at the main
program:

The next thing we are going to do is reset our counter from 0x0A back to zero. We will then increment the
counter for the brute force check by one. Now we know how the brute force check works: if you enter a

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/148.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/46.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/167.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/176.png

(wrong) 10 digit code more than 3 times, the contents of location 403048 will be above 3 and we will jump
to the brute force message. If you want to try it, go ahead. Just remove the BP at address 401204 and
enter in a 10 digit code three times:

i ' Crackme#12 by Detten

And we get the expected message.

Now, make sure our BP is still set at address 401204 (and clear all other BPs) and restart the app. We
have to restart the app as once you enter the brute force message it zeroes out the counter every time.
Can you see where?

So what we know so far:

1) The password is 10 digits.

2) If you try more than three times with the wrong code, you get a brute force message and have to restart.
3) Every time you hit a button, memory locations 403038, 40303C and 403040 get modified in a different
way for each button.

4) After hitting ten buttons, we enter a couple calls that check our code and changes a jump instruction in
the code section of memory at address 401407.

5) If the password is not correct, the jump that is created points to a return that just returns us back to the
main loop.

6) Therefore, entering the correct password must change this jump to something else, either a jump to a
different memory location where our good boy will be, or changing more of the code in this area to create
the goodboy at this memory section instead of creating a jump. This sounds more plausible as if it was
simply changed into a jump to a new location, what is all this weird looking, non-functioning code for?

Knowing all this, we know we must zero in on the section of code that does the self modifying changes,
namely the code starting at address 40144C. Let's look at that section again:

3] m

One thing we can gather is that the compare with 0x52 at address 40146e is pretty important. It basically
tells the program that the changes to the code that have been made are the correct changes. But what is
an opcode of 0x52 mean? Well, after a rather lengthy Google search, | discovered that opcode 0x52 is
“PUSH EDX". So therefore, this code checks to see if the first instruction is a “PUSH EDX”, and if it isn't, it
bugs out. So what happens if we force that instruction to be a push edx? Let’s try it. Set a BP at address
40146E where the code checks for the push instruction and run the app. When we break at this address,
go to address 401407 and change the value to 0x52:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/187.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/19.png

ntdll.KiF.

v Fill with MO

Now, the code moves the value at address 40303C into EAX and XORs it with memory location 40143B.
What is that address? Let’s look:

ntdll.EiF

CHRR "EB*

b e

As we can see, itis just a memory location toward the end of our self modified code section. After XORing
it, we then have:

Now we know that these locations are not being changed into the proper code, so it's not really helping us,
but seeing as this is the last thing that the app changes, it must be important. Let's keep going, now that
we've changed the PUSH EDX and see what this sections does. Step back into the main loop and then

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/44.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/54.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/64.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/25.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/35.png

into the call at address 401211:

ntdl L

We are now at the beginning of the self modified section, starting with our added PUSH EDX. Let'’s tell Olly
that things have changed and to re-analyze this section of code:

Backup

Binary 3 : B4
Undo selection Alt+BkSp FEEFFEER)
ssemble Space
Label
mment
Breakpoint
Hit trace

Run trace

w in Durnp

View call tree

Search for

Find references to

cutable /

from module

Wiz
View

Ctrl+A

Detach Process

Scan object files Ctrl+0
Process Patcher
T Re

object scan from module

and things start to look a lot better:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/73.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/83.png

ntdll.KiFas

ntdll.KiFas

It looks like real code now! Well, except for that bit at the end that we created incorrectly.

Now, this is where things get a little challenging and experience will be helpful here. We must look at this
code from a ‘big-picture’ standpoint and think “What is it trying to do?”. We have a PUSH EDX at the
beginning. This, together with the POP EDX at the end tells us that EDX will be used in this code locally.
We then have some empty NOPS which should probably contain code, though we don’t know yet which
code. We then have a bunch of memory locations being XORed with DWORDSs. Experience will tell you
that this normally means we are decrypting something, and in this case it's whatever EDX points to. We
can deduce that because EDX is PUSHed and then never set, even though it goes on to be changed and
referenced. The NOPs are probably the location to set EDX, and EDX will point to something that will be
decrypted (or altered) with the XORs.

Lastly, we have several memory locations that were incorrectly decrypted starting at address 40143D. BUT
the call to SetDIgltemTextA was not one of them, meaning this instruction was not changed. Generally
before a call to SetDIgltemTextA, we have seen that arguments are pushed onto the stack, so we can
assume that when we enter the correct password, the instructions from 40143d to 401442 will probably
contain several push instructions (probably 3).

Now the big question is what should EDX point to? We have several choices here, and again, this is where
experience comes in. An experienced reverse engineer will probably remember that string “An error
occurred” and think “we never used that string. We saw that it was just a decoy and was never used.
Maybe that is what will be decrypted...”. Another hint that tells us that this is a viable solution is that the
string is pushed onto the stack but is never used. Why? Here is a picture of the stack when we enter this
code:

So assuming that we want to test our hypothesis, we want EDX to point to this string. The easiest way
would be lo simply load EDX with the offset in memory that the “An error occurred” string is placed, namely
address 403000. The problem is that would take up too many bytes. Looking again at our code, there are
only 3 NOPs that we can use to load EDX with a pointer to the error string. Well,putting our assembly hat
on, and remembering that the string is currently pushed onto the stack, maybe we can load EDX with the
pointer to the string from the stack...

Generally we load a local variable with an instruction like this:

MOV EDX, [EBP + some_#] or MOV EDX, [EBP - some_#]

So the question is what is that number? Step over the first couple of instructions until we get to address

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/93.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/55.png

401408:

EY
4
4
4
4
)
4
48E
4
4
4
EEY:
E
E
E
4
4
4
426
4
4
4
4
4
E
438
4
4
44

Looking back at the registers we can see that EBP points to 18F9CO0 and that the error string is 12 bytes
higher than EBP (lower on the stack):

RETURH to

RETURH to

RETURH to

So our instruction that would load a pointer to the error string would be:

MOV EDX, [EBP + 0x0C]

Let’s try it and see how many bytes it takes:

It seemed to fit just right @ . Now let’s single step and see what happens. First, at address 401408, EDX
is loaded with a pointer to our text:

e1. 86481468
B(FFFFFFEFF]

EDX is then incremented, so now points to the second character of our string(the ‘n’ in ‘An error

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/74.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/84.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/94.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/102.png

occurred’). Four bytes (one dword) is loaded into EAX starting at the ‘n’ in ‘An error occurred”. EAX is then
XORed with 0x100430D, making EAX equal to 0x73656363. This new value is then going to be saved into
the address where the error string is located (at 403000). We can see the string before our value is stored:

Hmmm. Our string is being modified. Let’s keep going.

We now load the next four bytes, XOR them with 0x52154F01, and store them back into memory, which
makes our string now look like this:

And now we can probably guess what it's going to say. Stepping over the last modification shows us the
entire string:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/113.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/122.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/132.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/142.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/151.png

And we can see that we were right, though we’re not out of the woods yet. We now know what the string
should say. The problem is, since we entered an incorrect password and the last statements were
incorrectly decrypted, our message will never be displayed. What we have to do is rebuild the pushing of
the argument onto the stack for the SetDIgltemTextA. Getting help in Olly on SetGlgltemTextA, we can see
that there are three arguments that need to be pushed onto the stack (in assembly order):

LPCTSTR IpString // text to set
int nIDDIgltem, // identifier of control
HWND hDlIg, // handle of dialog box

The first one is easy:

PUSH [EBP + 0x0c]

As this is the pointer to our new text string. The second and last options are a little harder, but fortunately
we have a reference. There is a SetGlgltemTextA when the bruteforce message is displayed:

We can see that the ControlID equals 3 and the handle to the window is 707AA. The control ID is easy:

PUSH 3

The handle is a little harder, but looking at the stack again, it's not that hard:

Fortunately, the handle is right on the stack:
PUSH DWORD PTR [EBP + 8]

Inserting our code now makes the disassembly look rather nice:

2 EAN, 1
10RO
v

IORD
D

PUZH [
ALL <.
LEAUE
RETH

Running the app finally rewards us with our goodboy:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/161.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/171.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/181.png

(TED|

Saving the binary with our patches now makes it possible to enter any 10 digit password and get the
goodboy. We can consider the app cracked.

Of course, it kind of feels like we cheated a little bit (and we did). It seems like it would be much more
gratifying to know what the password really is. Well, you're in luck as that’s the topic of the next tutorial

Beginning at location 4012CO0, each button dictates various manipulations on the main variables at
addresses 402038, 40303C, and 403040. Let’s call these variables a, b and ¢ (a = 402038, b = 40303C
and c = 403040). Can you figure out what each button does to manipulate these three variables? I'll give
you the first one:

4012C0 add ecx, 54Bh ; c += 54Bh

4012C6 imul ebx, eax ;b*=a

4012C9 xor eax, ecx ;a*=c

Now, can you figure out the remaining 14?

-Till next time.

R4ndom

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/191.png
Random
Rectangle

	thelegendofrandom.com
	R4ndom’s Tutorial #16B: Self Modifying Code « The Legend Of Random

