—— _ S _ _

The Legend Of Random

Programming and Reverse Engineering

Home Tutorials Tools Contact Forum

R4ndom’s Tutorial #16A: Dealing With Windows Messages

by R4ndom on Jul.30, 2012, under Beginner, Reverse Engineering, Tutorials

Well, after overcoming two viruses (one for me and one for my computer) | finally have the latest tutorial
up. This tutorial will be part of a three part tutorial, all dealing with the same crackme ( a pretty hard one)
called Crackme12 by Detten. In the first part we will go over how Windows messaging works. The second
part will be about self-modifying code. In this part we will also crack the app. In the third and final part we
will introduce bruteforcing. And you guessed it, in the third part we will bruteforce this binary. Each part will
continue where the previous left off.

This three part series will be challenging, but | guarantee you that if you take your time and experiment on
your own, you will gain critical knowledge in reverse engineering. And remember, if you have any
questions, feel free to ask in the . I will also give homework at the end of each tutorial that will help
you prepare for the next one. This is where the real learning will come in & .

As always, the files you need will be available in the download of this tutorial on the page. For the
first part, the files include the crackme and a cheat sheet for Windows messaging.

So, without further ado, let's begin...

In this tutorial we will talk about Windows messages and the procedures that handle them. In almost all
programs, with the exception of apps written in Visual Basic *sigh* , .NET, or Java, tasks are accomplished
through the use of a message driven callback procedure. What this means is that, unlike in the old DOS
days of programming, in Windows you simply set up the window, providing the various settings, bitmaps,
menu items etc you want displayed, and then you provide a loop that runs until the program ends. This
loop’s sole responsibility is to receive a ‘message’ from Windows and send it to our app’s callback function.
These messages can be anything, from moving a mouse, to clicking a button, to hitting the ‘X’ to close an
app. When we make a Windows app, we provide this endless loop in our WinMain procedure, along with
an address to call whenever a message comes in. This address is our callback. This loop then sends the
messages it receives to our callback function with the address we provided, and in this callback we decide
whether we want to do anything with this particular message, or simply let Windows handle it.

For example. we may display a simple message box with a warning in it and an OK button. All we care
about is the message that says OK was clicked. We don’t care if the user moved the window (a
WM_MOVE message), or clicks in our window outside the OK button (a WM_MOUSEBUTTONDOWN
message). But when the message come thru that the OK button was clicked, that's when we may want to
do something. All of the messages we don’t want to handle, Windows handles for us. The messages we
do wish to handle, we simply override Windows and do something with it.

The main procedure that sets up the windows and contains the loop is called WinMain and the callback is
generally called WndProc if it's a window, or DIgProc if it's a dialog box, though the names can be anything.

| have included in the download a guide to all Windows messages that you should have open during the
tutorial. You can download all of the support files on the page. You can also download the
windows messages cheat sheet on the page.

Go ahead and load Crackme12.exe into Olly and let's have a look around:



http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://www.thelegendofrandom.com/forum/
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle


This is what a standard app, written in C or C++ looks like when using a dialog box as the main program
window.

*** |f the program used a regular window instead of a dialog box, it would look different. see below.***

Notice the arguments being pushed onto the stack and the call to DialogBoxParamA. This sets up a dialog
box to be used as the program’s main window (as opposed to a normal window, but don’t get bogged
down in the details- it really doesn’t matter). Getting help on DialogBoxParamA we see:

@ Win32 Programmer's Reference
File Edit Bookmark Options Help

int DialogBoxParam(
HINSTANCE hi

Identifies an instanc
IpTemplateName
Iu:h-nnﬁ th ate. arame h ¥ zrminated ch ring that
ifies identifier of the dialog box template. If
the param BS0 ifier, wi zero and i der word mu tain the
identifier. You can use the lu'IAI\EINTRESLJURE E macro to create th

dwinitParam
Specifies the value to p

Return Values
If the function . the W the value of the nR
d to termina

If the function fa

Remarks
The DialogBoxParam func he C i ctio create the dialog box. DialogBoxParam then

For our purposes, the most important thing in this call is the address of DLGPROC. This is the address for
the callback in our app that will handle all of the Windows messages. Looking back at the disassembly, we
can clearly see this address:

In this case, it's 40102B. Let’s head there and see what it looks like. This will be the...



http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/130.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/226.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/319.png
Random
Rectangle


Here we can we the beginning of it:

This is a fairly normal looking DIgProc. It is usually just a really big switch statement, though in assembly, it
turns into a really big if/then statement. If you read through my last tutorial, this should look somewhat
familiar, the only difference being that in this case, Olly could not figure out the case labels (ie. Case 113
(WM_TIMER)).

This procedure is here for one reason- to respond to the Windows messages that we wish to respond to. If
you look closely, you will see a bunch of compare and jump statements. This is checking each section of
code against the message ID that Windows has sent in. If the code matches one of these compare
statements, that code is run. Otherwise, it will flow through all the compares, none will match, and it will be
sent on to Windows for Windows to handle.

Let’s view this process a little closer. Go ahead and run the app:



http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/419.png

A very strange crackme, to say the least. Go ahead and play around with it. You will notice that you can
continue to hit buttons and nothing happens, though it does have a ‘clear’ button. It seems that it wishes us
to put in a specific code, and unless we do, the app will do nothing.

Let’s now put a BP on the beginning of the DIgProc code at address 40102B and re-start the app so we
can watch the messages come in:

As soon as you start the app, we will immediately break at our BP. You will notice that a couple
instructions in we start our first compare

40102E CMP [ARG.2], 110

If you look up ID 110 in the list of Windows messages included in the download of this tutorial, you will see
that 110 is the code for InitDialog:

This message gives our app a chance to initialize some things. If you step through and the message is
INITDIALOG, we will fall through and perform the instructions beginning at 401037.

mel? by Detten'|

Looking down at the info area we can see that ARG.2 is not 110 but 30:



http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/18.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/61.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/71.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/91.png

In our chart, 30 is the message for set font. So this is the first message Windows is sending through.

The next compare is with 10, which in our message cheat sheet is WM_CLOSE:

So when the close button is clicked, this code will be run. The next compare is 111 which is
WM_COMMAND:

WM_COMMAND is a catchall for several Windows message types, usually connected to resources, for
example a button click or selecting a menu, or clicking a toolbar icon. In addition to a WM_COMMAND
message, a second integer is sent in the ARG.3 holder that helps clarify the command message. For
example, if you clicked on a button, a WM_COMMAND message would come through and ARG.3 might
have the button’s ID in it. If you were drawing in a freehand draw program, ARG.3 may have the X and Y
coordinates of where the mouse is currently:



http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/81.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/101.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/111.png

Looking at this carefully, we can see that WM_COMMAND is the only other message (or really, collection
of messages as each WM_COMMAND can be a different ‘type’) that this procedure handles. If you single
step through you will notice that no code is run for our current message, WM_SETFONT, and we simply
return at the end of our procedure. This tells Windows that we wish Windows to handle this message, not
us:

This time we see that itis a WM_COMMAND message. Stepping down to the compare that checks for this
message at address 401081, we can then take a closer look at the WM_COMMAND handler:



http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/121.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/131.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/141.png

Notice it moves ARG.3 into EAX and EDX. It then performs a SHR (shift Right) on the EDX register in the
amount of 10 (or 16 decimal). It then OR’s this value, and if it's not a zero, we jump. Basically this is
checking if the fifth bit of this argument is a zero or not (you are reading that assembly book, right?). This is
because the upper bits of EDX tells us the ID of the resource that has been affected. In this case, itis a
zero, so we will jump over the remaining code and return from our callback:

and here we can see the jump:

Running the app again, we again stop at our BP. This time we can see that we are dealing with a
WM_INITDIALOG message:



http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/151.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/161.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/171.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/181.png

IT "An

In this particular crackme, this code happens to be important. We see that several integers are stored into
memory starting at 403038 (they are accessed out of order and 403038 is the lowest). Let’s first bring that
up in the dump window:

and see it is initialized to zeroes before we run these lines. Now step over the first MOV instruction and
you won't see anything happen, but a zero is copied into address 403048. Stepping over the next
instruction we can see the effects though:

[OEPPETEETY ]
BB4BIB§T

The fact that they are words written in hex is a dead giveaway that it is important to this crackme & .
Next, the value 42 is copied 4 times at address 403040. We can see the ASCII equivalent of “B” in the
ASCII dump area:



http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/19.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/20.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/211.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/22.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/23.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/24.png

Lastly, the integer 403000 is copied into address 40304C, which Olly can tell is a pointer to code or data
beginning at 403000 (remember little endian):

It gets very interesting at this point because as you hit F9, each time something new appears in the dialog
box (after about 6 runs), as a message is received to draw that resource onto the screen. The next
message is 135, or WM_CTLCOLORBUTTON:

which draws a button on the window:



http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/25.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/26.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/27.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/28-after-11-F9s.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/29-after-7-F9s.png

At this point, clicking F9, you will actually see the dialog box get built, one button at a time. It's interesting
to see all the messages come in and look them up in our chart. You will see that there are a lot of
messages that come through. If you don’t know one, just Google it and you can get a description of it.
Toward the end, the label will be drawn at the bottom, and the “No access” text will be written to it. This will
complete the window. | had to click F9 about 35 times before the window was complete:

So now you can see how a dialog box gets built. You set up the basics of the box, the title and the overall
look, and you pass in a pointer (address) to a callback function that will handle all messages sent from
Windows. Windows will then send a collection of messages, one at a time, to this callback, giving us the
chance to run code at each message if we so desire. After the box has been completely built, Windows
enters an inside loop that just sits there and waits for us to do something. As soon as we do, a message is
sent to our callback with the appropriate ID of the action that has taken place. We can then decide to act
on this message or ignore it and let Windows handle it.

One final thing you will notice is that, if the app is running in Olly, just moving the mouse over the window
will cause Olly to pause at the beginning of the message handler with a new message. Windows is telling
our handler that the mouse was moved over it. Basically, anything you do to that dialog box will send a
message to our handler.

1. See if you can figure out what happens after clicking a button, especially to the memory contents



http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/30.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/311.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/32.png

starting at address 403038. Do the different buttons do different things? Can you begin to understand the
code that is modifying these memory locations?

2. Take a guess on how long the password is.

-till next time

R4ndom



http://www.templatesnext.org/
http://wordpress.org/
Random
Rectangle


	thelegendofrandom.com
	R4ndom’s Tutorial #16A: Dealing With Windows Messages « The Legend Of Random




