The Legend Of Random

Programming and Reverse Engineering

Home Tutorials Tools Contact Forum

R4ndom’s Tutorial #14: NAGS (And | don’t Mean Your
Mother)

R4ndom Beginner, Reverse Engineering, Tutorials

Nags, or nag screens, are generally message boxes that pop up to remind you that your trial is ending,
you need to register, a reminder about visiting the website... basically anything that's nagging and not
necessary (like most bosses @). Many Freeware programs come free because they're full of nags (ads,
time-trials, re-directs). Commercial software also includes them often, reminding you “you have 18 days
left to try this product.” etc. Getting rid of nags is a central theme in reverse engineering, and sometimes
provides it's own set of challenges. In this tutorial we will be going over two apps that have nags. We will
then bypass them so they no longer show, and then patch them so they won't ever come back.

I will also be introducing a new plugin for Olly called IDAFicator. It has many features and settings. you
can download the plugin from the page. Because there are so many features, | am also including a
tutorial by the author of IDAFicator in the download for this tutorial. | highly recommend watching it as there
are a lot of very cool features to this plugin.

The first binary we will look at is Nagl.exe. Running the program immediately pops up the nag:

=

[BULLSHIT] Please register this software for support and you'll receive
the full version!

You can obviously tell this was made by a cracker {8 . Anyway, after clicking OK you get the main screen:

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle

Status

You ha e ram
say itis

Close About

Notice it says “Nag not removed!. |, of course, could not help clicking the “Hints” button and was rewarded
with some very detailed information:

and we're in luck. You can see the text for the nag screen at address 4010AE. Let's dbl-click that and
jump to where the nag is created:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/2.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/3.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/4.png
Random
Rectangle

Hmm, an interesting string above it, but let's ignore that for now. Let’s click on the first line of the
MessageBoxA code at address 4010A7 to see where it's called from:

And we can see that it is called from a JE instruction at address 40108B, right after a compare. Well, we
certainly recognize this scenario @ . Let's place a BP on that JE instruction:

And run the app. We break at our BP and see that we are going to jump to the nag screen instructions, so
let's make it not jump:

and then run the app:

and e

and v

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/5.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/6.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/7.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/8.png

So, that's what the “Dirty Crack” thing was all about- apparently we didn't patch enough. Let’s restart the
app and Olly will pause at our BP. Zero out the zero flag again:

and let’s step twice to the next jump. As you could probably guess by now, this jump SHOULD jump to our
good boy, but instead falls through to our bad boy:

by TOC,

APPLMODAL

bw TOC,

Hag r

ght to u

and when we run the app we see we were right:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/9.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/8.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/10.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/11.png

We can obviously patch this program by keeping our current patch and going back to address 40108B
(where we originally zeroed out the zero flag) and patch it to never jump. Saving these two patches will
work fine. But | also want to show you (as | have mentioned before, and if | haven't | should have) that
there are ALWAYS other ways to patch an app, usually many. Restart the app and scroll to our BP:

Notice that this collection of instructions is something like this (in a high-level language):

if (contents of 4032B0 == 3)
jump “Dirty Crack”

else if(contents of 4032B0 == 2)
jump to “Show Nag Screen

else if (contents of 4032B0 == 1)
jump to Good Boy Msg

else
Display “Dirty Crack”

We know that since the nag screen is displayed by default, the contents of memory address 4032B0 will
always equal 2, as that's the jump that is taken. Well, what if we just bypassed this whole if/then clause
and immediately jumped to the good boy? So if we replace the very first jump to just jump to the good boy,
we would only need one patch. Try it:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/12.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/13.png

Now run the app:

And you can see that it accomplished the same thing. Another, even more elegant solution may be to
think, “If the contents of 4032B0 are always equal to 2, and to hit the good boy message it needs to be 1,
why not just place a 1 in this memory location and we'll always hit the good boy?” You should try this.
Restart the app, click on the dump window, go to address 4032B0 and binary edit it to be a one. Did it
work?

Another thing to keep in mind is there are always other ways to find the code section we are looking for.
For example, if we couldn’t use strings in this example, we could do a search for Intermodular calls:

@ Found intermodular calls

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/14.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/15.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/16.png

Notice that there are 4 calls to MessageBoxA. Right click one of them and choose “Place a breakpoint on
every call to MessageBoxA”. When you run the app, before anything is displayed we stop at the following
line of code:

Look familiar? It is the nag messagebox !! So always keep in mind that there are more than one way to
accomplish something. Soon, we will also be learning some other techniques that can be used (like
windows message handlers) that will give you an even bigger bag of tricks.

Now let’s take a look at Nag2.exe. It is similar but we will solve it in different ways. When we start the app,
we get the expected nag:

Mag!!

Oh, do u like this program? You are using the trial ver
blablabla..

and after clicking OK we get the main screen:

KillMag - KiTo

KillNag - KiTo

At this point | closed the app and loaded it into Olly:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/17.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/182.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/191.png

mation = HULL

First things first, let's see if there are any strings. One thing | wanted to point out here is the plugin
IDAFicator. Among many additions, it provides a group of buttons along the top that making searching for
strings a lot easier. When clicking the strings button (Str), it shows both ASCII and Unicode and also
brings the cursor up to the top automatically so you don’t have to scroll to the top your self. Here’s what
the buttons look like:

The first button (the left and right arrow) take you forward and back. For example, if you click on a call,
then press enter to go to that call, clicking the first icon will take you back to the call instruction. Right-
clicking takes you forward. The second button will attempt to find the beginning of the current function,
while right-clicking will attempt to find the end. The next is the strings button. Next is the Hardware
BreakPoints button. It brings up a nice dialog that shows you all of your hardware breakpoints. Very
handy. The target icon opens the folder where your app resides and the list icon brings up a dialog to enter
multiple lines of assembly code, used for if you are changing a substantial part of the exe.

You will also notice a new menu item called “Breakpoint->" that opens a drop down of many used API
calls so you can set breakpoints on them automatically:

Text Recuperation

Message B

Dialog Boxes DialogBoxParamd

Files CreateDialogParamA
Modules and Libraries CreateDialoglndirectParamd

Memory Management

DialegB rarmW

Registry CreateDialogParamW
Directories and Paths

CreateDialogIndirectParamW
Time
Miscellanecu

VB APIs

Lastly, there is a context menu item added that allows you to restore hidden bytes, which we will get to in a
future tutorial.

So go ahead and click in the strings button (“Str”) on the new button bar:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/201.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/112.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/213.png

IE‘ Found strings are

isassembly string
0L ERH, RED PTR 55:[ESP+E] lal CPU selection)

g o ~n 1 did this one for your newbies who wants to practice more on nagssn kito_lest@hotmail.com ~n htt
uagu
"Dh did u forget this one? :P™

'Dh. do W lee this program? Youw are using the trial wersion.. visit blablabla..™
*mscores.dl L™

*CorEx itProcess”

TiProaram name unknown '

Runtine Errort-nsnProgram: ™

"chr‘usoF'i Ulsual C++ Runtime Library™

"HessageBoHﬂ
"Get Aot Lwellindow™

"GetProcesshindowStat ion'"

"Unknown security Failure detected?

1 [EEP-1221,Hag2. "A security error of unknown cause has been detected which hassncorrupted the program’s internal state. The program
BE722 "Buffer overrun detected!”

1 [EBF-1221,Hag2. "H buffer overrun has Deen detected which has corrupted the program’sninternal state. The program cannot safely oo
<Drogram name unknoun

et el e e e et

BEE18
EEC

SER "chr‘usol‘;t Uizual C++ Runtime Library™

- FLF
BB4BIBE~C . EBS 6lobassa ML ERE, 1
BE4E16E71 . L2 leca RETH 1&
BE4E16E74 SE4C24 B4 MO ECH, DWORDPTR SS: LESP+4] Caze 118 (WM_INITDIALOG) of switch BB4016804
BE4E1E7E | . 6H 48 FUSH & Style = MB_OKIMB_ICOMASTERISK | ME_AFFLMODAL

BE4E]67H E5 SO514608 FUSH HagZ.B64851568 Title = "Hag*t™

BE48187F . GBS BES14868 FUSH HagZz.BE485166 Tewt = "0h, do u like this program? You are using the
HEd4E1EEd | . 51 FLUSH EC: hOwner = MULL

AE4EiEss | . FFIE CEEa4088 CALL OWCORD PTR DS: [<&USERS2.MessageBorAX]|kMessageBouA

HE4EiEsE | . BE Bl00@86E HMOL EA, 1

AEdEiEaE | . C2 1863 RETH 1&

BE4E1 693 SES424 a4 MoL ED, OWORD. PTR S5: CESP+41 Caze 18 [LLIH_CLEISE] of switch BE481684
aE4aiedy | . 6H 88 FPUSH & Rezult =

agd4aieas | . B2 PUSH ED: [hl.Llnd = BB4BlBF3

@Ed4aiesn | . FFLE CCEa40@8 CALL DWORD PTR DS:C<&USER22.EndDialog:] Endl:ll.alog

aE4aloAa EZ 61008608 ML ERE, 1 Default case of switch GB4B1621
BE4E16A5 | . C2 1803 RETH 1&
BEd4E 1 BAS cC IMT=

To see the nag’s method. It is a self contained method (there is a RETN above and below it) so we know it
is called from somewhere. Click on the first line of it at address 401074 to see where it's called from:

HEdE1EEE | . SBdd2d BB HMOL ER:, DWORD PTR S5: [ESP+21
. E23ES8 1@ SUE EAX, 16 Switch (cases 18..111)

BFS4 S60AEEE6 JE Magz.a84a16833

20 8616666 SUE ERAX, 108

4 &8 JE_SHORT HaaZ.om4piars

DEC _ERX kernel32.BaseThreadIn it Thunk

JE SHORT MagZ.@e4e1laic

A0R EHH, EAX kernel32.BaseThreadInitThunk; Default case of switch &

CZ 18668 RETH 14

BFEF4424 BEC MOMZ X ERX, WORD FTR S5: CESF+C] Caze 111 [MF‘LCDHMHHD] DF switch BE4610684
20 ES0sHaEE SUE ERR, SES Switch [cases BE9.

4 22 JE SHORT Magl.B@dE184R

45 CDEC EAX kernel32.BaseThreadIn it Thunk
TE 75 JHZ SHORT HagZ.B@4@1G6A6

SBd424 B4 Moy EAx, ONORDT PTR S5: [ESF+4] Case 3EA of switch Ga481821

SR 44 PUSH 44 rotule = MB_OKIME_ICOMASTERISK | ME_APFLMODAL

52 BCS24060 PUSH Hagz.B8b4652ac Title Info™

&2 28514608 FUSH HaoZ.Be@485128 Teut = KillHag ~n I did this one for wour newt
58 FUSH ERZX hilwner = F&97ISES

FF15 C25@4a86 CALL DWORD PTR DS: [<&USER32.MesszgeBorA>]|LMessa0:BorA

EZ B1080666 MOL ERE, 1

CZ 1868 RETH 1i

=13 PUSH ESI Case 2B of switch @@481621

2BF424 B2 MOw ESI, OWORD FTR S5: [ESF+E1

&R 168 FUSH 18 Fotule = MBEL DK HEI ICONMHAMD | ME_APPLMODOAL
62 FEE148E8 HagZ. BE4851 75 Tit le Ha

&2 ERE14086 Hagz. B84R5 152 Text = "0h, dld u forget this one? :P™
=13 ESI hDuner = NOLL

FF15 CaSa4a88 OWORD PTR DOS: [<&USER32.Mes=ageBoxA*] | kMezzag:=BorA

EH @1 1 [Resul.': =1

=) ESI hlnd = HULL

FF15 CCEa4a88 DWORD PTR DS:[<&USERZ2.EndDialog:] EndDialog

EE ESI kernel32. FEO7I20R

BS 810688608

Cz 16868

» #EB4C24 B4 MOL ECH, DWORD PTR SS: [ESF+41 Case 118 (WHM_INITDIALOG) of switch B84616884
&R 46 FUSH 48 Style = HB DK r“IB ICOHASTERISK | ME_AFFLMODAL
58 SE514E6608 FUSH HagZ.BB485158 TltlE’

62 EES 14688 PUSH HagZz.B@ad4E5186 exnt = do u like this program? You are using the

51 FUSH EC:= hDuner- = NULL

. FF15 C25R4@85 CALL DWORD PTR DS: [<&USER3Z.MessageBorAk]|LMessageBorA

HE4Ei1EsE | . BE Blo0@8E6 MOL ERE, 1

and we can see it's called from 401012, a JE instruction. Let’s put a breakpoint on this and run the app:

BEE 1 me . 93ES 18 SUB ERX, 18 Switch (cases 16..111)
EE4EiEEs | L BFE4 2oEBE0EE JE Magz2.8@461892
HodEioEn | . 20 28618866 SUE EHX, 18E
4 &8 JE_SHORT Hage. 68481674
DEC _ERAX kernelZ2.BaseThreadIn it Thunk
JE SHORT HagZ.B@481@81C
EE%‘IE?E'EHX kerne |32, BaseThreadIn it Thunk; Default case of switch

MOUZ: ERA:, WORD FTR S5: CESF+C] Case 111 (WM_COMMAMD) of switch BE4E1684

SUB ERX, ZES Switch (cases 3E9..3ER)
JE SHIZIRT MagZ.0a48184R

and we break on that JE instruction. Notice that it is not calling our nag screen. The reason for this is we
happen to be in the middle of Window’s message handler. | will be going into depth on message handlers
in another tutorial, but for now just know that all GUI windows programs have a message handler and
Windows sends various message through it. Depending on which message comes thru (and whether we

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/212.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/221.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/231.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/241.png

wish to do anything out of the ordinary when a certain action is achieved) we can add our own code to
override Window's normal routines. For example, when we click the ‘X’ to close a window, Windows will
send a message through the message handler that says “hey, the user wants to close the window.” We
can either let the message go through, in which case Windows will handle it and close the window, or we
can ‘trap’ this message and do what we want (maybe pop up a dialog that says “You have not saved, are
you sure you want to quit?”.

Our breakpoint happens to be right in the middle of this, so the first message that has come through does
not match the message that this app expects to override in order to show the nag:

ME_AFFLMODAL

~n I did this one fc

Go ahead and hit F9 to run the app and we will stop at the same BP, but this time, the jump will be taken,
showing our nag. Let’s tell Olly to not show the nag:

Now, if we leave this breakpoint, 34 more messages will be sent through this message handler. You can
either keep the BP in place and click run 34 times (in which case, at some point you will see the window
appear, the buttons being drawn etc) or you can remove the BP and just hit run once. In this case, the call
is not made to the nag again so removing the BP and running it is fine:

We then have our main screen:

IKillMag - KiTo

KillNag - KiTo

Notice that the initial nag is now gone.

Normally what we would do is patch the JE instruction that jumps to the nag with a NOP so that it never

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/251.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/271.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/28.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/29.png

jumps, but | wanted to show you another way this patch can be accomplished. We know that when the
correct message comes through the message handler (in this case the second message) our nag code will
be called. Well, what if we allowed the jump to the nag, but changed the nag to just jump right back again?

Here, the jump will be made to the nag instructions at 401074, but then we will immediately jump back to
the line after the initial jump (401014). Basically, our program will jump, then jump right back to the next
line:

dInitThunk
dInitThunk; De
1AMD

=n I did this

1€
HAMD ME_AFFLMOD

There is really no difference between NOPing the JE instruction at 401012 or adding a jump back at
401074, but | wanted you to start noticing that there are always multiple ways to patch- sometimes
NOPing a call is not the best way. Remember, you OWN this binary- you can add whatever code you want,
so don't be afraid to modify it, especially when learning.

Running the app shows that the nag has been bypassed just the same:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/301.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/312.png

KillNag - KiTo

Now let's save the patch. Highlight the changed code (it's OK if you highlight more), and select “Copy to
executable” -> “Selection”:

H 1@
S Fo514E00
EE Sas14880

FF1S Coca4080
&R 81

Se
FF15 CCEB4880
SE
B1EREEER
1866
SE

48
SasSl4680
Gas14680

51

FF15 Ca584880
B2 B1080868
CZ 1B8d
SBSdz24 B4

&A @E

E2

FF15 CCER4BEG
B2 B1EEBEEE
C2 18@a

cC

cC

rr

RETH 14
JHP SHORT
HOF

MO
FUSH 4@
FUSH MagZz.
FUSH Magz.
FUSH ECA
CALL DWOR|
MOL ERK, 1
RETH 14
MO ED, OL
FUSH @
FPUSH EDA
CALL DhCR!
[

Hex dump

0 e 0 0 0 0 0 D

Copy

Binary

Undo selection
Aszemnble
Label
Comment
Breakpoint

Hit trace

Run trace

Follow
Mew origin here
Goto

Follow in Dump

Search for

Find references to
View

Copy to executable
Analysis

Help en symbelic name

Detach Process

Then right click in this new window and select “Save file™:

1BARREE

HOU_ ER, 1

Alt+BkSp
Space

Enter

Ctrl+Gray *

Ctrl+F1

'HB_ICDHHHHDIHB_HPPLHDDHL

d % forget this one? :P"

A

EB_ICDHHSTERISKIHB_HPPLHDDHL

u like this program? You are usi
a0eS

_0SE) of switch Da4aloed

f switch BE4E1621

HE1EF224
HE1EFo2E
BE12F
Ik |

Selection

All modifications

HETEF 4,

BA1SF24C
HE12F25E
HE12F054
HE12F258

o 16F S5

@ File C:\Users\Random'\Desktop\Random'\ Tuterials\Intro to Reverse Engineering'13 Nags\Mag2.exe
Eﬁgh ?MDRD FTR DSz [4858C5]

BEBEE45C
BABEARYEZ
BABEESES
BABARSES
BABAESEE
BABARSEC
BAEAR4 T 1
BACEE T4
BACEE4 TS
BACEE4 7T
BACEE4 TS
Ba0aE4 7o
GEBEEY 7 F
BEBEEYEG
BEBARSSE
BABAESZE
BEBEESSE
BREBERSSS
BRABARSST
ARABARSSD

FF15 CEoa4aea
&A @1

=13

EFIE CCER4GEG
B 1 BRAAEG
1Ba6
SE

H 48

SH5 146860
& 98514880
FF15 CE5A4E6E
B2 B1B8606EE
C2 1@8@A
2BE424 B4
&A @@
52

LISH E

P =1
CALL DWORD PTR DOS: [4EEECC]

FOF ESI
HMOU - ERE
RETH 1@
JHP SHO
MOP

HOP

PUSH 4&
PUSH 4a
FUSH 4d
FPUSH EC
CALL Dl
MOU ER:
RETH_1H
HMOU - ED=

PLISH @
PUSH EO

TIOL B, OWORO FTH = LE

PUSH @
PUSH EDX

CALL DWORD PTR OS5: [<&lS

Backup
Copy
Binary
Assemble
Search for
Save file

Go to offset
View image in Disassembler

Hex

o B

Ctrl+G

tch HEGHIHES

451821

| saved it as a different name, in this case Nag2_partial.exe. You'll see why | called it partial in a minute:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/321.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/32b.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/32c.png

/| Recent Places

= Librari

=] Document
J. Music

=/ Pictures

E Vider

File name:

Save as type:

= Hide Folders

OK. Go ahead and load this new patched program in Olly and let’s try it out. We jump right to the main
screen, so we know the patch worked. Now click exit and we get:

Uh oh. | guess the author was really determined here. Let's go find this second nag. Go back to strings
and we can see that this nag’s text is in there as well:

@ Found strings are

~n I did

blablabla

Many, many, many apps do this; they start with a nag, and after closing the app, they add another one.
Most of the time, when searching for the first nag’s text string, you will just automatically look for any
others. Dbl-click on this text:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/32d.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/33.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/35.png

.EndOia

and here we see the method for this nag. Clicking on the first line of it we can see that the second nag is
being called right after the first nag was called, but it uses a different message to trigger it (probably a
window destroy message). So when this message comes through, signaling that the user has selected
“Exit”, the second nag will be called.

Your first thought may be “why don’t we just put another jump in this one to jump right back like we did in
the last one. Well, looking closely at this method, we can see that it calls the second nag, but then it
immediately calls EndDialog. So jumping right back will not work as our dialog will never close:

So you next thought might be, “let’s just change the JE instruction at 401026 to jump to the EndDialog,
jumping right over the nag MessageBoxA instruction.” This is a good thought, so let’s try it:

_APFLHODAL
did this

i_AFPLMOOAL

Change the JE instrution at 401026 to jump to 401062 instead, jumping to the first line of EndDialog:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/36.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/37.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/38.png

adIn it Thunk

adIn it Thunk;

[ESP+41

1
ORD PTR D

I

ORD FTR O -EndOia
A, 1

RT M:

and run the app:

Well, that doesn’t look too promising. So we obviously did something wrong. Here’s what we’re going to
do; let’s run the app without our patch, stepping through it, and see what it does, then run it with the patch
and see how they are different. Re-start the app and click “Exit” and we will break at our patch (which is
gone now that we re-started the app):

_HFPFLMODAL
did this

Step a couple lines and when you step over the call to MessageBoxA you will see the nag:

, did u forget this one? :P

Now step two more times until we are on our call to EndDialog:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/39.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/40.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/411.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/42.png

and let’s look at the stack. We can see that there are four items on the stack; a handle to our window, the
result of the end dialog, a pointer to the first line of our code (401000), and a return address to user32.

Now restart the app, and when we get to our patch, activate it (patches window, hit space bar with it
selected):

{ME_APFLMODAL
I did th

EndDial

B
B
B
B
A

and let’s look at our stack. We have the handle to the window, the result code, and a return to user32. We
are missing the pointer to the first line of our code at 401000!!!

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/43.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/44.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/45.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/46.png

If you scroll up and take a look at the call to the second nag, you will notice that before the message box is

created, ESI is pushed onto the stack. This is a pointer to our code. It just so happens that this program
pushes it before calling message box, though it could have been done after. So we are missing an
important push that the app needs in order to run EndDialog properly. The problem is we have some
initialization code we want, then a call to a nag we don’t want, then a call to EndDialog that we do want:

4
0481 BEE

Well, let’s get rid of the code we don’t want. Highlight the MessageBoxA instructions (from 40104F to
40105C) and right click. Select “Binary” -> “fill with NOPs”:

APFLMODAL.
wn [did thi f

Edit
Assemble 5 Fill with 00's
Label : Fill with NOPs

«EndDial

Binary copy

Breakpoint
Hit trace

Run trace

And bam! no more call to our nag:

1B_IC

MHAMD | ME_RPFLMODAL

this

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/47.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/48.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/49.png

ME_AFPLMODAL
I did th

. OWORD FTR

ORD FTR D= EndDialo
1

Now when you run the app, you will notice that the app closes normally. You can now save this patch and
there will be no nags left &8 .

-Till next time

R4ndom

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/50.png
Random
Rectangle

