
R4ndom’s Tutorial #14: NAGS (And I don’t Mean Your
Mother)

by R4ndom on Jul.16, 2012, under Beginner, Reverse Engineering, Tutorials

Introduction

Nags, or nag screens, are generally message boxes that pop up to remind you that your trial is ending,
you need to register, a reminder about visiting the website… basically anything that’s nagging and not
necessary (like most bosses  ). Many Freeware programs come free because they’re full of nags (ads,
time-trials, re-directs). Commercial software also includes them often, reminding you “you have 18 days
left to try this product.” etc. Getting rid of nags is a central theme in reverse engineering, and sometimes
provides it’s own set of challenges. In this tutorial we will be going over two apps that have nags. We will
then bypass them so they no longer show, and then patch them so they won’t ever come back.

I will also be introducing a new plugin for Olly called IDAFicator. It has many features and settings. you
can download the plugin from the tools page. Because there are so many features, I am also including a
tutorial by the author of IDAFicator in the download for this tutorial. I highly recommend watching it as there
are a lot of very cool features to this plugin.

The First App

The first binary we will look at is Nag1.exe. Running the program immediately pops up the nag:

You can obviously tell this was made by a cracker  . Anyway, after clicking OK you get the main screen:

The Legend Of Random
Programming and Reverse Engineering

Login

 

 

 Remember me

Recover password

Recent Posts

R4ndom’s Tutorial #14: NAGS (And I don’t
Mean Your Mother)

Ask and You Shall Receive: A New ASCII
Plugin

As if Making Tutorials Wasn’t Hard
Enough!

R4ndom’s Tutorial #13: Cracking a Real
Program

Winner of the tutorial #13 challenge

Recent Comments

R4ndom’s Tutorial #14: NAGS (And I don’t
Mean Your Mother) « The Legend Of
Random on Tools

R4ndom on Modifying Binaries: Making a
Window Non-Closeable

Cracker on Modifying Binaries: Making a
Window Non-Closeable

R4ndom on R4ndom’s Tutorial #13:
Cracking a Real Program

jehou on R4ndom’s Tutorial #13: Cracking
a Real Program

Archives

July 2012

June 2012

May 2012

Categories
Beginner

Intermediate

Random's Ramblings

Reverse Engineering

Tools

Tutorials

Uncategorized

Home Tutorials Tools Contact Forum

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle



Notice it says “Nag not removed!. I, of course, could not help clicking the “Hints” button and was rewarded
with some very detailed information:

Gee, thanks. Load the app in Olly and let’s try old reliable: search for strings:

and we’re in luck. You can see the text for the nag screen at address 4010AE. Let’s dbl-click that and
jump to where the nag is created:

RSS Feed

Meta

Register

Log in

Entries RSS

Comments RSS

WordPress.org

Subscribe

Enter your email to subscribe to future
updates

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/2.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/3.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/4.png
Random
Rectangle



Hmm, an interesting string above it, but let’s ignore that for now. Let’s click on the first line of the
MessageBoxA code at address 4010A7 to see where it’s called from:

And we can see that it is called from a JE instruction at address 40108B, right after a compare. Well, we
certainly recognize this scenario  . Let’s place a BP on that JE instruction:

And run the app. We break at our BP and see that we are going to jump to the nag screen instructions, so
let’s make it not jump:

and then run the app:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/5.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/6.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/7.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/8.png


So, that’s what the “Dirty Crack” thing was all about- apparently we didn’t patch enough. Let’s restart the
app and Olly will pause at our BP. Zero out the zero flag again:

and let’s step twice to the next jump. As you could probably guess by now, this jump SHOULD jump to our
good boy, but instead falls through to our bad boy:

Let’s just patch that to always jump:

and when we run the app we see we were right:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/9.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/8.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/10.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/11.png


We can obviously patch this program by keeping our current patch and going back to address 40108B
(where we originally zeroed out the zero flag) and patch it to never jump. Saving these two patches will
work fine. But I also want to show you (as I have mentioned before, and if I haven’t I should have) that
there are ALWAYS other ways to patch an app, usually many. Restart the app and scroll to our BP:

Notice that this collection of instructions is something like this (in a high-level language):

if (contents of 4032B0 == 3)
    jump “Dirty Crack”
else if( contents of 4032B0 == 2)
    jump to “Show Nag Screen
else if (contents of 4032B0 == 1)
    jump to Good Boy Msg
else
    Display “Dirty Crack”

We know that since the nag screen is displayed by default, the contents of memory address 4032B0 will
always equal 2, as that’s the jump that is taken. Well, what if we just bypassed this whole if/then clause
and immediately jumped to the good boy? So if we replace the very first jump to just jump to the good boy,
we would only need one patch. Try it:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/12.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/13.png


Now run the app:

And you can see that it accomplished the same thing. Another, even more elegant solution may be to
think, “If the contents of 4032B0  are always equal to 2, and to hit the good boy message it needs to be 1,
why not just place a 1 in this memory location and we’ll always hit the good boy?” You should try this.
Restart the app, click on the dump window, go to address 4032B0 and binary edit it to be a one. Did it
work?

Another thing to keep in mind is there are always other ways to find the code section we are looking for.
For example, if we couldn’t use strings in this example, we could do a search for Intermodular calls:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/14.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/15.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/16.png


Notice that there are 4 calls to MessageBoxA. Right click one of them and choose “Place a breakpoint on
every call to MessageBoxA”. When you run the app, before anything is displayed we stop at the following
line of code:

Look familiar? It is the nag messagebox !! So always keep in mind that there are more than one way to
accomplish something. Soon, we will also be learning some other techniques that can be used (like
windows message handlers) that will give you an even bigger bag of tricks.

 

The Second App

Now let’s take a look at Nag2.exe. It is similar but we will solve it in different ways. When we start the app,
we get the expected nag:

and after clicking OK we get the main screen:

At this point I closed the app and loaded it into Olly:

 

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/17.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/182.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/191.png


First things first, let’s see if there are any strings. One thing I wanted to point out here is the plugin
IDAFicator. Among many additions, it provides a group of buttons along the top that making searching for
strings a lot easier. When clicking the strings button (Str), it shows both ASCII and Unicode and also
brings the cursor up to the top automatically so you don’t have to scroll to the top your self. Here’s what
the buttons look like:

The first button (the left and right arrow) take you forward and back. For example, if you click on a call,
then press enter to go to that call, clicking the first icon will take you back to the call instruction. Right-
clicking takes you forward. The second button will attempt to find the beginning of the current function,
while right-clicking will attempt to find the end. The next is the strings button. Next is the Hardware
BreakPoints button. It brings up a nice dialog that shows you all of your hardware breakpoints. Very
handy. The target icon opens the folder where your app resides and the list icon brings up a dialog to enter
multiple lines of assembly code, used for if you are changing a substantial part of the exe.

You will also notice a new menu item called “Breakpoint->” that opens a drop down of many used API
calls so you can set breakpoints on them automatically:

Lastly, there is a context menu item added that allows you to restore hidden bytes, which we will get to in a
future tutorial.

So go ahead and click in the strings button (“Str”) on the new button bar:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/201.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/112.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/213.png


and on the seventh line down we see our nag’s text, so let’s double-click:

To see the nag’s method. It is a self contained method (there is a RETN above and below it) so we know it
is called from somewhere. Click on the first line of it at address 401074 to see where it’s called from:

and we can see it’s called from 401012, a JE instruction. Let’s put a breakpoint on this and run the app:

and we break on that JE instruction. Notice that it is not calling our nag screen. The reason for this is we
happen to be in the middle of Window’s message handler. I will be going into depth on message handlers
in another tutorial, but for now just know that all GUI windows programs have a message handler and
Windows sends various message through it. Depending on which message comes thru (and whether we

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/212.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/221.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/231.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/241.png


wish to do anything out of the ordinary when a certain action is achieved) we can add our own code to
override Window’s normal routines. For example, when we click the ‘X’ to close a window, Windows will
send a message through the message handler that says “hey, the user wants to close the window.” We
can either let the message go through, in which case Windows will handle it and close the window, or we
can ‘trap’ this message and do what we want (maybe pop up a dialog that says “You have not saved, are
you sure you want to quit?”.

Our breakpoint happens to be right in the middle of this, so the first message that has come through does
not match the message that this app expects to override in order to show the nag:

Go ahead and hit F9 to run the app and we will stop at the same BP, but this time, the jump will be taken,
showing our nag. Let’s tell Olly to not show the nag:

Now, if we leave this breakpoint, 34 more messages will be sent through this message handler. You can
either keep the BP in place and click run 34 times (in which case, at some point you will see the window
appear, the buttons being drawn etc) or you can remove the BP and just hit run once. In this case, the call
is not made to the nag again so removing the BP and running it is fine:

We then have our main screen:

Notice that the initial nag is now gone.

Patching the App

Normally what we would do is patch the JE instruction that jumps to the nag with a NOP so that it never

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/251.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/271.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/28.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/29.png


jumps, but I wanted to show you another way this patch can be accomplished. We know that when the
correct message comes through the message handler (in this case the second message) our nag code will
be called. Well, what if we allowed the jump to the nag, but changed the nag to just jump right back again?

Here, the jump will be made to the nag instructions at 401074, but then we will immediately jump back to
the line after the initial jump (401014). Basically, our program will jump, then jump right back to the next
line:

There is really no difference between NOPing the JE instruction at 401012 or adding a jump back at
401074, but I wanted you to start noticing that there are always multiple ways to patch- sometimes
NOPing a call is not the best way. Remember, you OWN this binary- you can add whatever code you want,
so don’t be afraid to modify it, especially when learning.

Running the app shows that the nag has been bypassed just the same:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/301.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/312.png


Now let’s save the patch. Highlight the changed code (it’s OK if you highlight more), and select “Copy to
executable” -> “Selection”:

Then right click in this new window and select “Save file”:

I saved it as a different name, in this case Nag2_partial.exe. You’ll see why I called it partial in a minute:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/321.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/32b.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/32c.png


OK. Go ahead and load this new patched program in Olly and let’s try it out. We jump right to the main
screen, so we know the patch worked. Now click exit and we get:

Uh oh. I guess the author was really determined here. Let’s go find this second nag. Go back to strings
and we can see that this nag’s text is in there as well:

Many, many, many apps do this; they start with a nag, and after closing the app, they add another one.
Most of the time, when searching for the first nag’s text string, you will just automatically look for any
others. Dbl-click on this text:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/32d.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/33.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/35.png


and here we see the method for this nag. Clicking on the first line of it we can see that the second nag is
being called right after the first nag was called, but it uses a different message to trigger it (probably a
window destroy message). So when this message comes through, signaling that the user has selected
“Exit”, the second nag will be called.

Your first thought may be “why don’t we just put another jump in this one to jump right back like we did in
the last one. Well, looking closely at this method, we can see that it calls the second nag, but then it
immediately calls EndDialog. So jumping right back will not work as our dialog will never close:

So you next thought might be, “let’s just change the JE instruction at 401026 to jump to the EndDialog,
jumping right over the nag MessageBoxA instruction.” This is a good thought, so let’s try it:

Change the JE instrution at 401026 to jump to 401062 instead, jumping to the first line of EndDialog:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/36.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/37.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/38.png


and run the app:

Well, that doesn’t look too promising. So we obviously did something wrong. Here’s what we’re going to
do; let’s run the app without our patch, stepping through it, and see what it does, then run it with the patch
and see how they are different. Re-start the app and click “Exit” and we will break at our patch (which is
gone now that we re-started the app):

Step a couple lines and when you step over the call to MessageBoxA you will see the nag:

Now step two more times until  we are on our call to EndDialog:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/39.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/40.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/411.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/42.png


and let’s look at the stack. We can see that there are four items on the stack; a handle to our window, the
result of the end dialog, a pointer to the first line of our code (401000), and a return address to user32.

Now restart the app, and when we get to our patch, activate it (patches window, hit space bar with it
selected):

Now we will jump over the message box nag call. Step until  you get to the EndDialog call:

and let’s look at our stack. We have the handle to the window, the result code, and a return to user32. We
are missing the pointer to the first line of our code at 401000!!!

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/43.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/44.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/45.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/46.png


If you scroll up and take a look at the call to the second nag, you will notice that before the message box is
created, ESI is pushed onto the stack. This is a pointer to our code. It just so happens that this program
pushes it before calling message box, though it could have been done after. So we are missing an
important push that the app needs in order to run EndDialog properly. The problem is we have some
initialization code we want, then a call to a nag we don’t want, then a call to EndDialog that we do want:

Well, let’s get rid of the code we don’t want. Highlight the MessageBoxA instructions (from 40104F to
40105C) and right click. Select “Binary” -> “fill with NOPs”:

And bam! no more call to our nag:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/47.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/48.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/49.png


Recent Posts

R4ndom’s Tutorial #14: NAGS (And I don’t

Archives

July 2012

Tags

adding functionality assembly language binary code

No tags

Now when you run the app, you will notice that the app closes normally. You can now save this patch and
there will be no nags left  .

 

-Till next time

R4ndom

Leave a Reply

 Name

 Mail (will not be published)

 Website

RSS feed for this post (comments)

· TrackBack URI

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/50.png
Random
Rectangle




