
R4ndom’s Tutorial #13: Cracking a Real Program
by R4ndom on Jul.12, 2012, under Beginner, Reverse Engineering, Tutorials

Introduction

In this tutorial we are going to take off the training wheels and crack a real program. This program has a
time restriction, and after this time, it will not work anymore. We are going to patch it to think it is
registered. The target is included in this download (I am not stating the name of the program as the
purpose of this tutorial is not to get a ‘cracked’ program but to learn how to do it.) Like all commercial
programs, if you plan on using them, you really should consider buying it. People put a great deal of time
into apps and they deserve to be compensated. In an attempt to not make this series about ‘getting
cracked software’, I tried to get a program that no one would really want, so I downloaded this app, which
had the least amount of downloads last week on Download.com. To be totally honest, after cracking the
program in this tutorial, I liked it so much I paid for the registration and now use the app legitimately. Just
goes to show you you can’t judge an app by it’s downloads.

Well, on with the show…

Studying the App

Go ahead and install the app. After completion, the following screen comes up:

Let’s leave the “Run the app” checked and see what we’re dealing with:

The Legend Of Random
Programming and Reverse Engineering

Login

 Remember me

Recover password

Recent Posts

R4ndom’s Tutorial #13: Cracking a Real
Program

Winner of the tutorial #13 challenge

Modifying Binaries: Making a Window Non-
Closeable

Update to Tutorial #13 Challenge

A Pre-challenge to Tutorial #13

Recent Comments

nwokiller on Winner of the tutorial #13
challenge

R4ndom on Modifying Binaries: Making a
Window Non-Closeable

kongo_86 on Modifying Binaries: Making a
Window Non-Closeable

nwokiller on A Pre-challenge to Tutorial
#13

razor8 on A Pre-challenge to Tutorial #13

Archives

July 2012

June 2012

May 2012

Categories
Beginner

Intermediate

Random's Ramblings

Reverse Engineering

Tools

Tutorials

Uncategorized

Meta

Register

Home Tutorials Tools Contact Forum

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/115.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle

Well that’s not very nice. Here we notice some strings that could be a potential help; “unregistered”,
“evaluation”, “registered” etc. Click OK and we get to the main screen:

Notice it says “unregistered” at the top in the title bar. Usually, another place I look in an app is the about
screen. A lot of times it will contain strings and or ideas for reversing. During this phase, we are looking for
keywords, recognizable method calls, stuff like that. The more you do this the more clues will jump out at
you:

RSS Feed

Log in

Entries RSS

Comments RSS

WordPress.org

Subscribe

Enter your email to subscribe to future
updates

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/215.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/310.png
Random
Rectangle

Here we see the word “unregistered” again. The next thing I usually look for is if there is a way to enter a
registration code. This is a good starting point for penetration if the “search for strings” trick doesn’t work:

and here we see an option to enter a reg code:

Let’s try one and see what happens:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/413.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/53.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/63.png

Click OK:

Bummer. I never seem to get this part right . Alright, we have a pretty good idea as to what we have at
our disposal, so let’s load it up in Olly:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/73.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/84.png

You may notice that this looks a little different than most of the apps we’ve looked at so far; there seem to
be an awful lot of CALL instructions, without the typical Windows setup stuff (like RegisterClass…). This is
a good sign that the program was written in Delphi. Delphi uses a TON of calls all over the place. We can
tell for sure by running an ID program, but we’ll get into that in a future tutorial. There are also specialized
tools for dealing with Delphi programs, but fortunately we do not need to use them in this tutorial (we will
get to them though)

Finding the Patches

Let’s try our string search. Right-click, choose “Search for” -> “All referenced text strings” and the search
window will open. Scroll to the top and right click. Choose “Search for text”:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/93.png

and the search for text window opens. Now, I noticed that the word “registration” and “registered” were
used a lot earlier, so let’s search for them. Usually in this case, as my first search, I will search for “regist”
as this covers both “Registration” and “registered”, and I’ve never gotten a false positive from this (I guess
not a lot of programs use the word “registrar” in their programs). Make sure “Case sensitive” is un-
clicked and “Entire scope” IS clicked and hit OK:

The first hit we get doesn’t seem to promising, so hit ctrl-L to go to the next occurrence:

Notice that this occurrence is just the actual data of the first hit we had. This is because the first hit was
where the string “RegisterAutomation” was pushed on to the stack, and the second occurrence is the
actual data in memory for the string “RegisterAutomation”. You can tell because there is no instruction for it
in the second column, and instead it says ASCII. Most strings you come across will have two version of it,
the one where the string is accesses, and one where the sting actually resides:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/103.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/116.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/123.png

If you hey ctrl-L again, we will come to another not very promising looking string. Keep hitting ctrl-L until we
come to the following:

Now that looks a lot better. It would appear that at some point in the programs starting up sequence, it
checks if we art registered or not, and depending on the results, it fills the title bar of the window with either
the registered or unregistered string. This is a good place to start. Double click on the “registered” version
and we will jump to the code:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/133.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/142.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/152.png

First notice that we can see where the string is used at address 9AABA9, and we can also see where the
string is stored in memory at address 9AABBC. Secondly, notice that both strings are in the same method
and a conditional jump is above them. Clicking on that conditional jump at address 9AABA5:

we can see that if the result is equal, we will jump to the “unregistered” version of the string. We obviously
don’t want this to happen. Let’s place a BP on this JE instruction and start the app:

Olly will break at this line and you will notice that we are going to jump to the bad boy. Let’s change that:

and run the app. Olly will then break at this same line again, wanting to jump to the bad boy. Let’s change
it again by zeroing out the zero register and hitting run. This will happen one more, and clearing out the
zero flag, we finally get some feedback:

So that didn’t work. So patching that one check does not make us unregistered, although if you click OK
and zero out the flag one more time, you will notice that it does take off the “unregistered” title of the main
window:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/0.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/117.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/216.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/314.png

So at least we know we’re on the right track. What we are going to have to do is step this up to the next
‘level’ and investigate a little further. Re-start the app so that we break at our breakpoint and let’s
investigate a little more:

There is no call before the compare, but before the JE instruction there is a compare at address
9AAQB9E:

CMP BYTE PTR DS:[EAX+15B8],0

So, based on the outcome of this compare, we are either registered or we’re not. EAX+15B8 is just a
memory address, in this case a global variable as it starts with DS:. What we hope is that this is the only
check that the app is registered or not. If it is not, we will need to go find out where else the app checks for
registration status. Clicking on the compare instruction shows us what EAX+15B8 is:

So right click on this address and choose “Follow in dump”:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/414.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/54.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/64.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/74.png

***Your address will almost certainly be different than mine. That is OK. Just follow along and replace your
address with mine and it will run fine ***

Here we can see the address that is checked for being registered or not; it is the first 00 at address
1AC111C (on my computer at least). That means that if the contents of this memory location were to be
anything other than zero, this routine would assume we were registered. This also means that there are
probably other routines in the app that check this memory location which is why the main screen shows
“Registered” while another part of the app knows we’re not. Since we only bypassed this routine’s natural
flow after checking the memory contents, any other routine that checks it was not bypassed.

First things first, let’s set this memory address to non-zero so we know that at least this routine will always
work the way we want. Set a breakpoint on the compare line (9AABA5) and delete our other BP. Re-start
the app and Olly will break. Right click on the compare line and choose “Follow in dump” -> “Memory
location” as Olly reset our dump window when we restarted. One thing you may notice is that the memory
address that the compare instruction checks is different this time:

My first one was 1AC111C and it is now 1B9111C. Yours will be different than mine, but just notice that
the second time through, the memory address that stores the registered/not-registered flag is different.

Click on the “00″ in the dump (at 1B9111C in my dump), right click and choose “Binary” -> “Edit”:

Let’s enter 01:

and notice it has been updated in the dump:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/119.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/104.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/118.png

No go ahead and run it till we break again. You will notice that the memory contents have changed back to
zeroes and that we are now going to jump to the bad boy again. This means that somewhere in the app, a
secondary check was done that reset our registered flag back to zero. What we need to do is find where
this is being set and make sure it doesn’t happen. To do this, we want to set a hardware breakpoint on this
memory location to tell Olly to stop whenever the app writes to this location. We want to chose ‘write’
because somewhere a zero is being written to this address.

Re-start the app and run it until we break. Right click the compare and choose “Follow in dump” again as
Olly has reset the dump window. Binary edit the first memory location to 01. Notice it’s now at a different
memory address:

Then right-click on the first value in the dump that we edited and choose”Breakpoint” -> Hardware, on
write” -> “byte”:

When reverse engineering an app, I generally stay with hardware breakpoints as they are harder for the
app to detect. I selected
“byte” as it’s only the one byte we want to track.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/218.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/315.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/415.png

Now run the app. Olly will break at our normal breakpoint again, and you can see that the 01 value we
entered is still there, so so far so good. Run it again and Olly will break in a new section:

If you look in the bottom left corner of the OllyDBG window, you will see that we broke on our hardware
breakpoint:

Patching the App

Now, let’s study this code. the first instruction compared DL with the memory contents of our edited
address. If they are equal, we jump to 9ADC02, which simply returns. If they are not the same, we store
the contents of DL into our memory location. We already know that DL equals zero because we saw the
memory location change from our 01 back to 00. So this is basically another registration check, and if it
fails if puts a zero in the registered/not-registered flag. If it doesn’t fail, it leaves it alone. Now let’s remove
our hardware breakpoint “Debug” -> “Hardware breakpoints” and delete it, and let’s place another
hardware breakpoint at address 9ADBF4 so that we can break before this routine has run:

Now you may wonder why I didn’t just put a regular breakpoint on this. It is because I tried that first! But
Olly would not break on it. There are several reasons that could cause this; this code changes
polymorphically, so our BP is lost, there is a check in the app for a software breakpoint and the app
removes it, the breakpoint is in a section that Olly will not track automatically… It happens. If it does, we
need to set a hardware breakpoint on it instead. There are no guarantees that a HW breakpoint will work,
as the app may specifically check for these as well, but it is a more robust way of placing a breakpoint, so
it usually works.

*** We will be going over anti-debug tricks more in future tutorials***

Now restart the app and we will again break at our new hardware breakpoint:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/55.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/75.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/85.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/95.png

OK, now let’s think for a minute. This routine is called before our original break. This routine checks if we
are registered or not and puts a zero in the memory address pointed to by [EAX+15B8] if it is not, and a 01
(or any non-zero) if it is. Then our old routine is called, the one that either prints “Registered” or
“Unregistered” on the title of the window based on if this memory location contains a 0 or 1. So if we make
sure a 1 is put into that memory location every time this routine is run, then any other routines will check
that memory location and see that it is a 1 and think that we’re registered.

What would happen if we just change this routine to always put a 01 into the proper memory location? Let’
try it.

Now the next question is what’s the easiest way to do that. Well, we have the memory location already
being populated with something (DL) at address 9ADBFC, so we could just change the DL top a one. The
problem with this is that changing the DL to a one will add a byte to the length of this instruction, and this
will overwrite our RETN statement.What about if we replace the compare and jump instructions and
instead just load 01 into DL. That way, on the last line, DL will be moved into our memory location! So
here’s what we do- highlight the two compare and jump instructions:

Then right-click and choose “Binary” -> “Fill with NOPs”:

Which gives us this:

This step isn’t required, but it makes it a lot easier to see what you’re doing.

Now click on the first NOP at address 9ADBF4 and hit the space bar. This will bring up the assemble
window. Then enter MOV DL, 1:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/134.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/143.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/153.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/162.png

Click Assemble then Cancel. That gives us this:

Now, whenever this routine is called, a one will be put into the memory flag instead of a zero. Since we are
still paused on the first line of this routine, you can single step to see DL being loaded with 1, and then the
1 being put into the memory address (you may need to go to the proper address in your dump as Olly has
probably reset it again). Now run the app and Olly will break at our original breakpoint:

and we cann see that we are going to fall through to the correct string. Go ahead and keep running and
we will break in our modified registration check routine, and it will put a 01 into our address again as we
planned. This will go back and forth a couple times until finally:

We are now registered!!!! Go ahead and run the program (open a demo file) and Olly will break several
more times in our registration routine, but each time it will go the right way. Soon you will get to the main
screen:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/172.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/184.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/193.png

and you will see that we are still registered. Clicking on the about screen shows:

Congratulations. You have patched your first crack

Don’t forget to save it back to disk. Open the Hardware breakpoints window (“Debug” -> “Hardware
breakpoints”) and click the Follow button on our BP. That will take us to our patch. Highlight everything we
changed, right-click and select “Copy to executable”. The right-click in the new window and select “Save
to disk”. Save it as the original file name. Now quit Olly and run the app and experience it is all it registered
glory!!!!!

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/203.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/219.png

Recent Posts

R4ndom’s Tutorial #13: Cracking a Real
Program

Winner of the tutorial #13 challenge

Modifying Binaries: Making a Window Non-
Closeable

Update to Tutorial #13 Challenge

A Pre-challenge to Tutorial #13

Archives

July 2012

June 2012

May 2012

Tags

adding functionality assembly language binary code

cave code caves cracking crackme ebook

exploting binaries Guide Olly ollydbg olly

tutorial plugins reverse engineering
sandbox Tools tutorial

No tags

-Till next time

R4ndom

Leave a Reply

 Name

 Mail (will not be published)

 Website

RSS feed for this post (comments)

· TrackBack URI

Copyright © 1996-2010 The Legend Of Random. All rights reserved.

Jarrah theme by Templates Next | Powered by WordPress

Random
Rectangle

