
R4ndom’s Tutorial #12: A Tougher NOOBy Example
by R4ndom on Jul.09, 2012, under Beginner, Reverse Engineering, Tutorials

Introduction

In this tutorial we will be going over a program that’s a little more challenging. It is called ReverseM1,
written by R4ndom. I will also be discussing the plugin “Ascii Table” for Olly. It is downloadable on the tools
page. This ReverseMe is a perfect example of why the LAME way of patching is often just that- lame.

Getting Started

Go ahead and run the program:

We can see that it says it is not registered and is asking for a serial number. Let’s give it one:

and click “Check Serial”:

and we can see we are not correct (again!). Let’s open the app in Olly and do our trusty “search for

The Legend Of Random
Programming and Reverse Engineering

Login

 Remember me

Recover password

Recent Posts

R4ndom’s Tutorial #12: A Tougher NOOBy
Example

All is Right With The World, Again

R4ndom’s Tutorial #11: Breaking In Our
Noob Skills

Someone has Hijacked My Website!!!

Win a free iPud!!!!!!!!

Recent Comments

R4ndom’s Tutorial #12: A Tougher NOOBy
Example « The Legend Of Random on
Tools

noob1 on R4ndom’s Tutorial #10: The
Levels Of Patching

ludkiller on All is Right With The World,
Again

razor8 on R4ndom’s Tutorial #10: The
Levels Of Patching

razor8 on Win a free iPud!!!!!!!!

Archives

July 2012

June 2012

May 2012

Categories
Beginner

Intermediate

Random's Ramblings

Reverse Engineering

Tools

Tutorials

Uncategorized

Meta

Home Tutorials Tools Contact Forum

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/110.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/210.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/34.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle

strings”:

Well, that looks promising. Let’s check out the “That is not correct” string:

and we come to the heart of the matter. Because each of these are separate methods, we will need to see
where they are called from, so let’s do that:

and Olly opens the References window:

RSS Feed

Register

Log in

Entries RSS

Comments RSS

WordPress.org

Subscribe

Enter your email to subscribe to future
updates

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/410.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/52.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/62.png
Random
Rectangle

and we see that there is one call to this function. Let’s double-click that and see what it looks like:

Here, we can see that the bad boy is called from address 401078, and we can also immediately see that
there is a jump instruction that jumps to this call at address 40106A:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/72.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/83.png

Scrolling up a couple lines we can see the proverbial call to check routine/compare/jump that we’ve seen
before. From this we can guess that the main checking routine is at 4010FC, called from address 401063.
After returning, the EAX register is checked if it contains zero or not, and if it doesn’t, we jump to the bad
boy.

Let’s test out our hypothesis and set a breakpoint at address 40106A and re-start the app. After entering a
serial number (I entered the same ’12121212′) we break at the jump after the call to the serial check:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/92.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/102.png

Now let’s help Olly in the right direction so he won’t take the jump (and fall through to the call to the good
boy):

and hit run:

Yeah, that was easy!! Click OK and:

Oh F%$@ that S&*@, what the F$^& is going on here, you A$$$%^#!!!!! Obviously it didn’t register our
program. This means that there must be something we missed.

Looking a Little Closer

Let’s re-start the app, enter a serial and let Olly break again at 40106A:

We see that if we keep Olly from making the jump to the bad boy, execution falls through to the call at line
40106C, which will call address 4010AA. Looking down at that routine, we can see that it is pretty
standard; it opens a message box with “That is correct” and then changes the label on the main screen to

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/113.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/122.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/132.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/183.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/192.png

“This program is registered!”.

But wait! Once we return from that call, there is another call at 401071:

That call calls 401130, so let’s have a look-see at that routine. First of all, we notice that it calls
SetDlgItemTextA, but with a strange looking string. Let’s step through this line by line. At 401130 a call is
made to address 4010FC. Looking above at this we can see that this is the serial check routine. It then
OR’s EAX with itself to see if it’s zero, and if it is not, it performs a lot of weird looking stuff:

So what we can gather from this so far is that, after we patch the app to display the good boy message,
another call is made, and within this call, a call is made to the check serial routine again, performing the
same analysis on the results. This is a backup check! Now let’s see what happens if we fail this second
backup check (which we will since we only patched the jump):

First, ECX is loaded with 1F (31 decimal) ** Sorry, it’s a little cut off**. ESI is then loaded with zero and
EAX is zeroed out. We then enter a loop. We’ll go through the loop step-by-step. The first line moves a
byte from an address, ESI + 403070, and since we know ESI equals zero, the address is actually just

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/202.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/222.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/232.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/242.png

403070, into the AL register. Let’s see what’s at this address in the dump. Either right click and select
Follow in dump -> constant or just click in the dump window and select goto and type in the address
403070:

If we look carefully, we can see that this is the string that appeared above in the argument to
SetDlgTextItemA. So it is loading the first character of this weird looking string into AL.

*** One thing you should know is that in a lot of assembly language instructions, certain registers are used
in default ways, for example ECX is used as a counter, ESI is used as a source address, and EDI is used
as a destination. This is the case in this example.***

Next, we XOR this character with 2C, then save it back into the same memory address:

Lastly, we increment ESI (the source register) and do a LOOPD. LOOPD means lower the ECX register by
one and loop until ECX equals zero. This tells us that the value that was loaded into ECX originally, 31
decimal, is the length of this loop.

From a big picture, this loop is basically cycling through each character of this weird string, XOR-ing it with
2C, and saving it back into memory. This will go on until ECX equals zero, or 31 times. Single step once
past the LOOPD instruction to go back up to the top and look in the dump window:

You will notice that the first digit of this string has been replaced. The original character was XOR’ed and
now it is a “T”. If you step through this loop several times, you will see the dump window’s string change.
You will also see the argument for the SetDlgItemTextA change as well:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/252.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/261.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/272.png

Stepping completely through the loop, we can see the final message, which looks surprisingly familiar;
“This program is not registered!”. This is the same message displayed on the main screen showing that the
app is in fact not registered yet:

You can see that this string then becomes a value passed to the SetDlgItemTextA routine, in effect
replacing the registered message that was put up at the end of the good boy with a copy of the
unregistered message that was there before:

And here we see it in the main app:

So now we know that the smarter way to patch this app is to go into the serial check and make sure it
always returns the right value, as it’s called not only as the first check, but also after the success screen is
displayed. Just to remind you, the call to the serial check is called, then eax is tested for zero. If it’s not a
zero, we jump to the bad boy- so we want that routine to return a zero! Then, the second time the serial
check routine is called, it will return a zero again, and our second check will be passed:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/281.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/291.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/302.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/313.png

So let’s go to the serial checking routine and see what we can do about it. At the beginning of the routine
is a call to GetDlgItemTextA, as we could guess just get’s our entered serial. You can see this by right
clikcing on the argument at address 401101 (that points to the buffer that the text will be placed in) and
following it in the dump:

After we step over the GetDlgItemTextA instruction, we can see our serial in the buffer:

After it is stored in the buffer, the address of the beginning of the buffer is moved into EAX, and then the
contents of this address are moved into EAX. This basically moves the first four bytes of our password into
EAX. These bytes are then compared with 3334, and if they don’t match, EAX is filled with a 1 (bad),
otherwise, if they do match, EAX is stored with a zero (good):

We can see that the main decission maker is the JNZ instruction at address 401121:

This line determines whether EAX will equal zero or 1 right before the return. So what we want to do is
guarantee that EAX will always equal zero:

So now, the code will always fall through to moving zero into EAX and then jumping directly to the return.
Now running the app:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/322.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/331.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/341.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/351.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/361.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/371.png

and noticing that after the call to the serial check, we naturally jump to the goodboy:

and on the second check we will jump to the good boy as well:

So we have now found one patch that will register this program, no matter what the serial entered is. .
Congratulations.

ASCII Table Plugin

One thing you should do is try to find out what the password is (or what the requirements are for it). To
help you, download and install the “Ascii Table” plugin and copy it into your plugin directory. After
restarting, choose “Plugins” -> “Ascii table” and show the table. Even though it leaves a lot to be desired, it
does give you a quick table of all ASCII values:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/391.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/401.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/412.png

No tags

***If anyone would like to take it upon themselves to update or re-do this plugin, I would be eternally
grateful. For one, the text should not be highlighted nor editable (why would I want to edit the ASCII chart?
). Secondly, making the window sizable would be really great. If anyone does it, please tell me and I will
forever be in your debt ***

-Till next time

R4ndom

Leave a Reply

 Name

 Mail (will not be published)

 Website

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/114.png
Random
Rectangle

