The Legend Of Random |

Programming and Reverse Engineering

Home Tutorials Tools Contact Forum

R4ndom’s Tutorial #12: A Tougher NOOBy Example

R4ndom Beginner, Reverse Engineering, Tutorials

In this tutorial we will be going over a program that's a little more challenging. It is called ReverseM1,
written by R4ndom. | will also be discussing the plugin “Ascii Table” for Olly. It is downloadable on the
page. This ReverseMe is a perfect example of why the LAME way of patching is often just that- lame.

Go ahead and run the program:

We can see that it says it is not registered and is asking for a serial number. Let’s give it one:

and click “Check Serial™:

Register me 1

That is not correct.

and we can see we are not correct (again!). Let's open the app in Olly and do our trusty “search for

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/110.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/210.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/34.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle

strings”:

@ Found strings are
At 0 bl

R
ot
ot
ot
ot
ot
ot
ot

Well, that looks promising. Let’s check out the “That is not correct” string:

and we come to the heart of the matter. Because each of these are separate methods, we will need to see
where they are called from, so let’s do that:

Assemble
Label
Comment
Breakpoint
Hit trace

Run trace

MNew origin here

Follow in Dump
View call tree
Search for

Find references to

View

and Olly opens the References window:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/410.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/52.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/62.png
Random
Rectangle

@ References in Register: text to 00401003
H :

(Initial CPU

EndDia

Here, we can see that the bad boy is called from address 401078, and we can also immediately see that
there is a jump instruction that jumps to this call at address 40106A:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/72.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/83.png

88481868
Ba48166H
BE4E16a0

BE4E1694
BE4E169:
BE4E1690
BE4E1EIC
BE4E1EIF
BE4E1GA4
BE4E1 GRS
BE4E16AT
Ba4E1GAR
Ba4a16AC
Ba4a10E1
Ba4a1 0B
BE40 1 6B
Ba4616E0
Ba4E16C:
BE4E16C7
BE4E1GECO
BE4E1602
BE4E1602
BE4E1 605
BE4E1G0R
Ba4a160F
Ba4a10E1
Ba4816E:
Ba4616EE
Ba4a16Fa
Ba4E816F:
Ba4616FE

S Bc
EZ 29080800
E2 BRGRBEDE

EE ZC
E2 EEORBEEE
EB_ZE
2170 18 ECAz088E
75 1C
&A_@a
FF7S @&
ES E20B0ooa
EE_1@
2370 6c 19
7S BH
&R_Ba
FF7E @2
E2 DEGRABEEE
23ca

1a66

falz]
BAZA4080
23384080

o
CABRE0EE
24284060
&2 EDGZ080E
FFSE F4384880
BAGREGEEE
s l5)
BESA4GEE
BEZR4G8E
[alz)
[aelalalzlula)
SA2a4080
&2 EDG30800
FF35 242384080
Eg F10aEEEa

&2 BE0ZEE0E
&2 F5384808
&2 E9G20E0E
FF2E 342048806
E2 GHERBEEE
B2 22384000
SBeR

66:30 3433

H RegLster
OR_ERX,ERX
JHE SHORT Register.@8461873
CALL Register.804816AR0
CALL Register.B8481136
JMP SHORT Register.@@4616A4
CALL Register.@@4@ians
JMP SHORT Register.@@dE8
CHP [ARG.31, 2EC
JME SHORT Reglster BE4E 18R
FPUSH &
FUSH [ARG. 11
CALL <JHP.%user32.EndDialogr
JHMP SHORT Register. 88481804
CHMP [ARG.21, 14
SHORT Register.B8468168A4
FUSH &
FUSH [ARG.11
CALL <JHMP.%user32.EndDialog>

i@

5]
Reqister. 88482080
Register. 884823623

a
LJMP . fuserd2. MessaaeBor R
Register.BB4682634

H ZED
OWORD FTR DS: [4832694]
“<dMP . &user32. SetDlaltemTestA»

5]
Register. 88402085
Eeglster.BB4BSBBE

4JMP . &user32. MessageBorA>
gEELster BE4a3658

OWCORD PTR D5: [483894]
LJMP. fuserd2. SetDlaltenTentAx

ZEE
Register. 88482693
SES

OWORD FTR D05 [483694]

“dMP. tuser32. GetDlaltemTextAx
Ol EAX,Regizter. 0403098
Moy EAX, OWORD PTR DS:[EAX]
CHP AH, t33a

4. 7SCE1B9C

hlnd = B2528860C

[Result =B
EndDialog

[Style = HB Ok T HE_ HPPLHDDHL
Title Reglster me 1™
Teut = "That is correcti™
ROwner = HOLL

L MessaasBorA

ControlID = SED [1GES.]
LSetDlgltemTestA

ot le = MB_OKIME_APFLMODAL
Title "Reglster me 1"

Teut = ™That is not correct.”™
hwner = HULL

-HessageBOHn

ControllID = 3ED (1885.)
LSetDlaltemTexntH

[Count = 2868 (51

2.1
Euffer = Register.o@4@36893
ControlIl = SE9 (16881.]

LGetDlaltemTestA
ASCII "rizi12iz12"

Scrolling up a couple lines we can see the proverbial call to check routine/compare/jump that we've seen
before. From this we can guess that the main checking routine is at 4010FC, called from address 401063.
After returning, the EAX register is checked if it contains zero or not, and if it doesn’t, we jump to the bad

BR4E1AES

7o 24

SB45 @o

A2 24284800
ES 248808088
seCe

ac
SI08EEE0
ERBBEEEG
2c
SEHEEEEG

EB_Z2E&

2170 18 ECAZ@AREEA

75 1C

&A_A@

FF7S @3

ES Ez@@oang

EE_1a@

2370 ac 1@

7S B8R

&A_8a

FF7S B3

ES DEEEEEEE

23ce
1EEE
fuls)
BR3A4Ea6
23384880
e
CopaEaa0
34384080

2 EDB2EBE0

=
FF35 94384800
Eg EREBEEEG

BBB ls)
g, 54284880
sjulzlu]

ES
c2
=2
&8 I5TE4808
88 ESEI0808
FF35 9430460606
ES SHEEEEEE
B2 223E4E600
2BBA

130 3433

ar

[ullslalals o]

as

bR alsls o]

JHE SHORT Register.BB40187F
MOL ERH, [ARG. 11

MOL DWORD PTR DS:[4E823694]
CALL Regizter.@84816FC
OR_ERA, ERX

JHE SHORT Register.B@4@1873
CALL Register.B84816RA

CALL Register.BO04811368

JMP SHORT Register.H@84@18A4
CALL Register.B84@18032

JHMP SHORT Register.B@4@168A4
CHP [ARG.2],2EC

JMHE SHORT Reglster BE4E1AA4
FLUSH &

FUSH [ARG. 11

CALL <JHMP.&user3Z2.EndDialogk
JMP SHORT Register.BB4818A4
CHMP [RARG.21, 148

JHE SHORT RegLster BE4816A4
FUSH &

FUZH [ARG. 11

CALL <JHP.2%user32.EndDialog>
XDRUEHH.ERX

éa
Reaister.AR4836080
i Eegister.BB4BSB23

£JHMP. Suserd2. HessageBonA
Register. BA40236834
H ZED

OWORD PTR DS: [4836594]
<JMP. Buserdz2. SetbDlaltemTentA>

5}
Fegister. BE4E2EEE
Fegister. BA48308E

5]
<JMP. &user32. HessageBoxA>
Register. 80482850

H ZED
OWORD PTR DS:[483894]
LJHP. Guserd2. SetDlaltemTentAs

2EE
Register. 884023698

H ZE2
OWORD PTR DOS: [4836834]

L <JMP.%user32.GetDlgltenTestA>
ERX,Register. BA463693
ERX,DWORD PTR DO5: CEAX]

AX, 3334

SHORT Register.B848112R
ERX, 0

SHORT Register.8048112F
ERX, 1

oLl Booizter HAAAGTGEET

EZ CTFFFFFF
o

OREHx, EH-
JE SHORT Register.B@4d]1a6C

Rezult 5]
[hwnd = BESEBBSC
EndDialeog

Fesult 5]

[hwnd = BEEEBBSC
EndDialog
rportd. ?SCBIBQC

r=tyle = ME_OK!ME_AFPFLMODAL
Title = "Register me 1
Teut = "That is correctt™
hOwner = HULL

LHMezsaazBonA
rTent = "This
ControllD = SED 11085,]

Hind = BEBIE3ES (° Register Me 1°
LSetDlgltemTentH

[Stule = MB_OK!ME_AFFLMODAL
Title = "Register me 1

Teut = "That is not correct."™
hOwner = MULL

b MeszageBoxA

ControllD = SEO 11065, 1
Fllnd = @E3E
LSetDloltemTentr

rCount = Z88 (E1Z.)
EBuffer = HegLster.BB483898
CDntrDLID = 3E9 (1881,
nd = i
.Ge gItem th
ASCII "1Ziz1z212"

rportd. PECEIESC

Let’s test out our hypothesis and set a breakpoint at address 40106A and re-start the app. After entering a
serial number (I entered the same ’12121212") we break at the jump after the call to the serial check:

[T=xt = "This program is registeredt™

1
hlind = BEA3E368 ("Reaister Me 1",class="#327v@")
rT==t = "This program is not registersdt™

hlind = BE@2E362 ("Reaister Me 17, class="#327vE")

hilnd = BEAIEZLE [("Register Me 1°,class="#3277R")

progran is registeredt™

cclass="

rTest = "This program is not reglisteredt”

1
262 ("Register Me 1°.class="

2362 ["Register Me 1" ,.class=

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/92.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/102.png

Now let’s help Olly in the right direction so he won't take the jump (and fall through to the call to the good
boy):

and hit run:

program. This means that there must be something we missed.

Let's re-start the app, enter a serial and let Olly break again at 40106A:

We see that if we keep Olly from making the jump to the bad boy, execution falls through to the call at line
40106C, which will call address 4010AA. Looking down at that routine, we can see that it is pretty
standard; it opens a message box with “That is correct” and then changes the label on the main screen to

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/113.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/122.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/132.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/183.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/192.png

“This program is registered!”.

I

EndDi=z

That call calls 401130, so let's have a look-see at that routine. First of all, we notice that it calls
SetDIgltemTextA, but with a strange looking string. Let’s step through this line by line. At 401130 a call is
made to address 4010FC. Looking above at this we can see that this is the serial check routine. It then
OR’s EAX with itself to see if it's zero, and if it is not, it performs a lot of weird looking stuff:

So what we can gather from this so far is that, after we patch the app to display the good boy message,
another call is made, and within this call, a call is made to the check serial routine again, performing the
same analysis on the results. This is a backup check! Now let's see what happens if we fail this second
backup check (which we will since we only patched the jump):

First, ECX is loaded with 1F (31 decimal) ** Sorry, it's a little cut off**. ESI is then loaded with zero and
EAX is zeroed out. We then enter a loop. We’'ll go through the loop step-by-step. The first line moves a
byte from an address, ESI + 403070, and since we know ESI equals zero, the address is actually just

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/202.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/222.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/232.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/242.png

403070, into the AL register. Let's see what's at this address in the dump. Either right click and select
Follow in dump -> constant or just click in the dump window and select goto and type in the address
403070:

If we look carefully, we can see that this is the string that appeared above in the argument to
SetDIgTextltemA. So it is loading the first character of this weird looking string into AL.

*** One thing you should know is that in a lot of assembly language instructions, certain registers are used
in default ways, for example ECX is used as a counter, ESI is used as a source address, and EDI is used
as a destination. This is the case in this example.***

Next, we XOR this character with 2C, then save it back into the same memory address:

Lastly, we increment ESI (the source register) and do a LOOPD. LOOPD means lower the ECX register by
one and loop until ECX equals zero. This tells us that the value that was loaded into ECX originally, 31
decimal, is the length of this loop.

From a big picture, this loop is basically cycling through each character of this weird string, XOR-ing it with
2C, and saving it back into memory. This will go on until ECX equals zero, or 31 times. Single step once
past the LOOPD instruction to go back up to the top and look in the dump window:

You will notice that the first digit of this string has been replaced. The original character was XOR’ed and
now itis a “T". If you step through this loop several times, you will see the dump window’s string change.
You will also see the argument for the SetDIgltemTextA change as well:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/252.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/261.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/272.png

-

A612F AAR FETURM to
AR

LoD DD

Stepping completely through the loop, we can see the final message, which looks surprisingly familiar;
“This program is not registered!”. This is the same message displayed on the main screen showing that the
app is in fact not registered yet:

You can see that this string then becomes a value passed to the SetDIgltemTextA routine, in effect
replacing the registered message that was put up at the end of the good boy with a copy of the
unregistered message that was there before:

And here we see it in the main app:

e

Register Me 1

So now we know that the smarter way to patch this app is to go into the serial check and make sure it
always returns the right value, as it's called not only as the first check, but also after the success screen is
displayed. Just to remind you, the call to the serial check is called, then eax is tested for zero. If it's not a
zero, we jump to the bad boy- so we want that routine to return a zero! Then, the second time the serial
check routine is called, it will return a zero again, and our second check will be passed:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/281.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/291.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/302.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/313.png

So let’s go to the serial checking routine and see what we can do about it. At the beginning of the routine
is a call to GetDIgltemTextA, as we could guess just get's our entered serial. You can see this by right
clikcing on the argument at address 401101 (that points to the buffer that the text will be placed in) and
following it in the dump:

After it is stored in the buffer, the address of the beginning of the buffer is moved into EAX, and then the
contents of this address are moved into EAX. This basically moves the first four bytes of our password into
EAX. These bytes are then compared with 3334, and if they don't match, EAX is filled with a 1 (bad),
otherwise, if they do match, EAX is stored with a zero (good):

This line determines whether EAX will equal zero or 1 right before the return. So what we want to do is
guarantee that EAX will always equal zero:

So now, the code will always fall through to moving zero into EAX and then jumping directly to the return.
Now running the app:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/322.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/331.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/341.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/351.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/361.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/371.png

That is correct!

FFFFFF

So we have now found one patch that will register this program, no matter what the serial entered is. & .
Congratulations.

One thing you should do is try to find out what the password is (or what the requirements are for it). To
help you, download and install the “Ascii Table” plugin and copy it into your plugin directory. After
restarting, choose “Plugins” -> “Ascii table” and show the table. Even though it leaves a lot to be desired, it
does give you a quick table of all ASCII values:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/391.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/401.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/412.png

00111101
00111110
00111111
01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
01100100

***|f anyone would like to take it upon themselves to update or re-do this plugin, | would be eternally
grateful. For one, the text should not be highlighted nor editable (why would | want to edit the ASCII chart?
). Secondly, making the window sizable would be really great. If anyone does it, please tell me and | will
forever be in your debt ***

-Till next time

R4ndom

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/114.png
Random
Rectangle

