
R4ndom’s Tutorial #11: Breaking In Our Noob Skills
by R4ndom on Jul.05, 2012, under Beginner, Reverse Engineering, Tutorials

Introduction

In this tutorial we will be discussing patching programs again, but diving a little deeper than a typical single
“first patch we come to”. We will start with a console program and find the correct password that has been
hidden in it. It is included in the tutorial download. Other than this, all you will need is OllyDBG.

So let’s get started…

Console programs are 32bit windows just like any other 32-bit program running under windows. The only
difference is they don’t use a graphical interface. Other than that, they are identical. This crackme is called
CrackmeConsole.exe. Let’s run it and see what we got:

Well, looks easy enough. Let’s try a password:

Bummer. Pressing ‘N’ ends the app:

The Legend Of Random
Programming and Reverse Engineering

Login

 Remember me

Recover password

Recent Posts

R4ndom’s Tutorial #11: Breaking In Our
Noob Skills

Someone has Hijacked My Website!!!

Win a free iPud!!!!!!!!

R4ndom’s Tutorial #10: The Levels Of
Patching

R4ndom’s Tutorial #9: Solution

Recent Comments

razor8 on R4ndom’s Tutorial #10: The
Levels Of Patching

razor8 on Win a free iPud!!!!!!!!

Magic on Someone has Hijacked My
Website!!!

razor8 on R4ndom’s Tutorial #10: The
Levels Of Patching

msg1len on Someone has Hijacked My
Website!!!

Archives

July 2012

June 2012

May 2012

Categories
Beginner

Intermediate

Random's Ramblings

Reverse Engineering

Tools

Tutorials

Uncategorized

Meta

Register

Home Tutorials Tools Contact Forum

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/120.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/220.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle

Well, I think we have enough to at least start investigating. Go ahead and load it in Olly. Let’s then start by
searching for strings:

That wasn’t so hard. Let’s dbl-click on the bad boy message, “I’m sorry, but that is wrong” to at least get
into the right area:

Ok, let’s study this a little. We see a jump leads to this message from 402C56, denoted by the red arrow.
We also notice that we could get to it by not jumping at the JE instruction at address 4025D5. Let’s see
what happens if we do take this jump. Click on it:

RSS Feed

Log in

Entries RSS

Comments RSS

WordPress.org

Subscribe

Enter your email to subscribe to future
updates

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/317.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/414.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/512.png
Random
Rectangle

And scroll to where it points (a couple pages down):

That looks like the way we want to go . Let’s go back up and look around a little more:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/613.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/77.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/86.png

So address 4025D5 jumps to the good boy message, so that’s the jump we’d like to take. Let’s try clicking
on the other jumps to see where they lead us…maybe there’s an earlier jump that takes us to the good
boy message:

This one goes to the bad boy:

as does this one, and if you keep clicking on the jump instructions, you’ll notice the jump at address
4025D5 is the only one that jumps to the good boy. So basically, we want to keep all jumps that jump to
the bad boy from jumping, and force the jump to the goodboy into jumping. If we keep scrolling up, we
reach our first call/compare instructions at address 402582:

Scrolling further, we can see that there is a jump that skips the call but still performs the compare:

That’s not exactly normal behavior, but when we scroll up a little more we see another call compare group.
I have placed a BP on both of these calls:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/97.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/106.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/1110.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/125.png

OK, let’s go ahead and run the app in Olly and see what happens. I’l enter the password ’12121212′:

and Olly breaks at the first call:

Start single stepping and you will notice that the jump at 40256F jumps the second call. Hmmm, this gives
us an indication that this second jump may not be the password checker after all, but maybe some sort of
routine if our password does not meet certain specs, like too short or too long? Whatever, let’s keep single
stepping:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/136.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/146.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/155.png

Here, at address 4025C6, we see our main culprit that jumps to our bad boy message:

Let’s set the zero flag and see what happens:

and as we continue to single step, we hit our jump to the good boy and notice that it is taken:

Go ahead and run the app and we notice that we have found our first potential patch:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/167.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/176.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/186.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/196.png

Now, patching the jump where we set the zero flag may work, or may not work. It’s hard to tell. What if our
password is too short? Too long? A different password than the one entered. This patch is not a very good
patch as we don’t really know what we’ve done, we just know it happened to work in this case.

Digging Deeper

Let’s look at this code a little closer, using the levels we learned in the last tutorial, and try something not
so LAME. Scroll back up to the jump to the bad boy that we patched and let’s try to figure out why we
would have jumped had we not patched it. Notice that I have also placed a comment on the jump so I can
remember it later (if you recall, highlight the line and hit ‘;’ to add a comment).

I usually preclude all of my comments with a ‘###’, this way, later, when using other tools that fill in the
comments column for us, it’s easier to find my own comments- they stand out more. You can do whatever
you like though.

Now, let’s look just above this jump and see if we can figure out what caused it. Here I have marked the
first section above the jump:

Here we can see some SBB instructions with a compare. This code doesn’t really mean a lot here to us as
we have no idea what any of it pertains to, so let’s go up to the next section and see if we can start making
some sense of it:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/207.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/2110.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/227.png

Alright, here we’re getting somewhere. The first thing you may notice is the REPE CMPS instruction. This
is a red flag in reverse engineering! Let’s look up REPE and see what it says:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/237.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/248.png

It’s not horribly clear, but if you have any experience with assembly you know that the REPXX statement
repeats like a loop until ECX = 0. The instruction after the REPXX, in this case CMPS, is what is repeated.
Taken together, this statement means “Repeat comparing two memory addresses, incrementing this
address each time through the loop, while the zero flag remains equal.” In basic terms, it means “compare
these two strings.” In reverse engineering, anytime we compare two strings, red flags should go off. It is
not done very often in an app, and checking a serial number/password/registration key is one of the few
times it is. Let’s place a BP on the first line of this section at address 4025B5 and re-start the app. Enter
our password and Olly will break at this breakpoint:

Now notice that the first instruction, LEA ESI, DWORD PTR SS:[ESP+34], is Loading an Effective
Address into ESI from the stack. The SS: denotes the stack, the [ESP+34] denotes the position on the
stack, in this case the 34th byte past whatever the ESP register is pointing to, and the LEA instruction
means basically load the address of something, as opposed to the contents of the something. If we look at
the middle bar (where the blue arrow is pointing) we can see that SS:[ESP+34] equals address 0012FE88,
and at this address is stored our ASCII password. Single stepping once over this line shows ESI being set
equal to our password (that is currently on the stack):

The next instruction sets EAX to zero, and then we hit the REPE instruction. In this case, the contents of
memory at the address stored in ESI is compared with the contents of the memory address stored in EDI:

The ECX register is then lowered by one, the compare goes to the next memory location in both EDI and
ESI, and the loop will end when ECX = 0. In this case, if you look above you can see that ECX is set to 8
(which happens to be the length of our password) so this loop will go through all 8 digits of our password,
each time comparing a digit with a digit from the corresponding location after EDI. But wait…what are we
comparing to? If we look at the registers window again we see that EDI points to an address on the stack
that has some ASCII 7s in it. Let’s see this on the stack. Click on the adddress next to EDI, right click on it
and choose “Follow in stack”:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/257.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/268.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/279.png

The stack window then jumps to the referenced address, in this case 0012FE6C. At this address (and we
can’t help noticing at the next as well) we see a string of “37″s. Looking at our ASCII chart we can see that
37 is equal to “7″ which we saw in the registers window is in the EDI register:

Well, it doesn’t take a rocket surgeon to see that our inputted password is being compared with a
hardcoded ASCII string of all “7″s. There are exactly 8 of them on the stack (we got lucky that we
happened to enter a password that was the same length as the hard-coded password). These eight
“7″s are compared, one by one, with what we entered as a password. If we get through all 8 of them being
equal (equal to 7 that is) then we will take the next jump. Hmmmmmm. Our entered password is compared
with eights “7″s. This sounds to me like the password could be eights “7″s. Let’s restart the app and try it:

drumroll please….

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/288.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/297.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/306.png

No tags

And we got it . So, looking a little farther than we would normally patch has revealed the password,
which is frankly far better than patching an app not knowing if it will actually truly patch it or not. This is the
benefit of patching at a NOOB level as opposed to a LAME level.

One Last Thing

I just wanted to show you an example of going through code and making comments. Unfortunately, when
writing tutorials, you have to understand the app at a pretty deep level. Here is a picture of the core
section we were discussing with my comments in it:

As you can see, a lot goes into understanding the way an app works

-Till next time.

R4ndom

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/318.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/xxx.png
Random
Rectangle

