The Legend Of Random

Programming and Reverse Engineering

Home Tutorials Tools Contact Forum

R4ndom’s Tutorial #11: Breaking In Our Noob Skills

by R4ndom on Jul.05, 2012, under Beginner, Reverse Engineering, Tutorials

In this tutorial we will be discussing patching programs again, but diving a little deeper than a typical single
“first patch we come to”. We will start with a console program and find the correct password that has been
hidden in it. It is included in the tutorial download. Other than this, all you will need is OllyDBG.

So let’s get started...
Console programs are 32bit windows just like any other 32-bit program running under windows. The only

difference is they don’t use a graphical interface. Other than that, they are identical. This crackme is called
CrackmeConsole.exe. Let’s run it and see what we got:

C\Users\Random\Desktop\CrackmeConsole.exe m ﬂﬂlﬂ
e R ————

Welcome to AR Crackme #1
Please enter the correct serial:

Well, looks easy enough. Let’s try a password:

-
“\Random'\Desktop\CrackmeConsole.exe

Welcome to AR Crackme #1
Please enter the correct serial:

Try again? Y-/M:

Bummer. Pressing ‘N’ ends the app:

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/120.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/220.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle

Please enter the correct serial:
12121212

Try again? Y-N:

ul
Vizit http:-/scracking.accessroot.com/ for everything AR

Long live the ARTeam?

Greetz & Shoutoutz to Whitefire for hosting our forum, forum.exetools.com
arena.com. and the ARTeam

Press any key to continue . . .

Well, | think we have enough to at least start investigating. Go ahead and load it in Olly. Let’s then start by
searching for strings:

@ Found strings are
A Oi

wthing AR™

which

That wasn't so hard. Let’s dbl-click on the bad boy message, “I'm sorry, but that is wrong” to at least get
into the right area:

InitThunk

Ok, let’s study this a little. We see a jump leads to this message from 402C56, denoted by the red arrow.
We also notice that we could get to it by not jumping at the JE instruction at address 4025D5. Let's see
what happens if we do take this jump. Click on it:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/317.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/414.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/512.png
Random
Rectangle

HE4A25CE
GE4a250E
BE4E2503
Ba4B82505
Ba4E2508
HE4EZEER
HE4EZEES
HE4EZEER
HE4EZEED
HA4EZEEF
BE4A25F 1
GE4A25F3
GE4a25FE
Ga4a25FA
GE4a25F0
HE4E2081
BE4EZ5E
BE4EZSEE
HE4EZLET
HE4EZLEE
HE4EZGEE
HE4AZE1E
BE4EZE12
BA4AZG1S
Qa4p2618
Ga4a2e1A
Ga4p2elF
GE4Ea2621
Ha4E2624
BE4HZE2E
HEA4EZE2S
BE4EZE2R
HE4AZEZ0
HE4EZEIE

BEgE2201
BE4E2253
Ga4Ea2287
BE4E2252
GE4E2220
BE4E2256
GE4E2294
BE4E2298
BE4E229F
aa4a2301
Ba4E22H
Ba4E22AD
Ba4E22AA
BE4E22HF
aa4E2284
Ga4E22E3
Ba482280
BE4E22EE
BE4EZECA
BR4E22C2
BE4E2BCT
BA4E22CT
Ba4E23C00
Ga4a220F
Gad4a2202
Ga4a2204
aa4e2207

BEIEZET L
BE4E2ET
BR4EZETT
BRA4E25TD
BA4E257E
Ba482570
Ba4E2520
Ba482551
aa4E2582
BE4E82587
BE482550
BE4E2530
BE4E2ES2
BE4E2ESE
BE4E2ESA
BA4E2ESC
BE4E2EAG
BA4E25A2
Ba482504
Ba4E25H
BE4E25AS
BE4E825HA
BE4E25HF
BE4E25E3
BE4E25ES
BE4E2EED
BE4E2EEE
GE4E2ZEERD
BE4EZEEF
BR4E2EC1
aa4a2504
Ba482508
Ba4a2508
Ba4825CA
Ba4a2500
BE4E250E
Gad4a250a
BE4E2502
BA4E2505
BE4E2E0E
BE4EZEER
BE4EZEES
BA4E2EER
Ba4E25ED
Ba4e25EF
Ba4825F 1
Ba4E25F3
BE4E25FS
Ba4E825F[
BE4E25F0
Ba4a26H1
BEE2GES
BEE2GEE
BEAEZLED
BE4E2GEE
[E4 A2 5 HE

2BOS
BFSSCE

2BC2

BFS4 CREZaBE0
&2 43E24800
&2 AEZF4 1606
E2 REF4FFFF
2304 @2
2BFE

&R @A

3BCE

E2 DaFSFFFF
SBEE

SB a4

3
SR4C3Z2 B2
20432

P
SBS424 24
g2

Eg COlEGABE
23C4 A4
2B4C24 4@
&2 3960 ABEEEEEE
8B4C24 2C
3aca

ES CR260A88
23C4 4C

c3

&2 4CE14Q00

o2 ABZF4188
E2 DFFLFFFF
2304 @3

SEB41 @2

12
44

42
34

1@

Bl

BF24 CFO2BEEE
&3 48E24E80
&3 ABZF41686
E2 REF4FFFF
2ac4 @S
SBF@

A B8R

SBCE

E2 DSFSFFFF
SBBE

SBS1 B4
SR4C3Z @2

CHFP EDX,.EEP
SETHE AL
CHMP ERX,.EBX
JE Crackmel. 88482207
PUSH CrackmeC.B848E242
PUSH CrackmeC.B@8412FAE
CHLL CrackmeC. BA4E1A9E
0 ESF, 2

HDU ESI,ERK
FUSH @GR
MOW ECH,EST
CALL CrackmeC.B84a1EDQ
MOL ECK,. DWORD PTR DS:[ESI]
MOL EDK, DWORD PTR OS5z [ECK+4]
MOU CL,BYTE PTR DSz [EDR+ESIHE]
LEA ER%,DWORD PTR DS:[EDA+ESIT
wOR_EDI.EDI
TEST CL,&
JHE SHORT CrackmelC. BE4EZ61F
MOW ERAX,DWORD FTR DZ: [EAK+2E]
MOW EDK, OWORD PTR OZ: [EAKX]
MOW ECK, ERX
CALE CWORD PTR DS: [EDX+2CT

P ERX, -1
SHORT CrackmeC. BB4B261F
EDI, 4

ERX.DWORD PTR D5:[ESII
ECx, DWORD PTR DS: [ERK+4]
ECH,.ESI

CHP EDI,EBX

JE SHORT CrackmeC.B@84B82548
MOW ERRK, DWORD FTR DZ: [ECk+E]
MOW EDX, OWORD FPTR DZ: [ECH+22]
OR_ER:,EDI

JB SHORT Crackmel.BE4682290
Moy - EQK, OWORD FTR S5: [ESF+241
PUSH ED-

CHLLEC£agkmeC 88484740

HMOL ECH, OWORD
HMOU OWORD PTR
Moy ECk, OWORD
#0R EHX.EHX
CALL Crackmel.
AOD ESP, 4C

RETH

FUSH CrackmeC.
FUSH CrackmeC.
CALL CrackmeC.
AODO ESF, S

Haw ESI EA
FLUSH

Mo ECX ESI

CALL Crockmet.@6461ED6

HMaU EAX, OWORD FTR DS:[ESI]

May EC,OMORD FTR DS:[EAK+4]
LERA EAX,OWORD PTR DS: [ECK+ESI]
Mou CL,EBYTE PTR DS:[ERX+E]
#O0R_EDILEDI

TEST CL,&
JHE SHORT Crackmel. 884622ED
. n

PTR SS: [ESP+4@]
FZ:[A],ECH
PTR S55:[ESP+3C]

BA4A4FGE

BE4BE14C
Ba412FAG
BE481A%E

MOU ER:, OWORD PTR DO5: [ECA+2]
HMOU_ED, OWORD PTR DOF: [ECH+221
OR_ERX,EODI

CHP EDH EBEX

JHZ _SHORT CrackmeC. AE4a2550
OR_ERK, 4

PUSH EBX

PUSH ERX

CALL Crackmel.@B482F97

DWORD PTR S5:[ESP+2C1, 14
EDI, DWORD FTR =5: [ESP+121
SHORT CrackmeC.BB4B82596
EDI,ODWORD PTR Z5:[ESF+121
ED::, OWORD PTR Z5: [ESP+441

ED:, EB=
MOU_EBF, OWORD FTR S5: [ESF+251
JE SHORT CrackmelC.8@482508

5

JEB SHORT Crackmel.B@4825AR
MOU- ECH, EEP

CHP DWORD PTRVSSHIESP+4ST, 10
MOU ESI,DWORD PTR S5: [ESPES4]
JHE SHORT CrackmeC.BE4825E3
LER EZI,OWORD FTR S5: [ESF+34]
#0R _ERAR, ERR

REFE CHMPS BYTE PTR_ES:[EDII,BYTE PTR DS
JE _SHORT Crackmel.@8@482504
SBE ERAR, ERR

SBE ERAR, -1

CHFP ER:, EEX

JHE SHORT CrackmeC.B848250EB
CHFP_EDi, EEP

JE_SHORT Ciackmeﬁ Ba482508

, EE=
JE CrackmeC.B84823AA
FUSH CrackmeC.BB468E243
FUSH CrackmeC.B8412FAR
CALL CrackmeC.B8481A%8
ADD ESP, 2
MOL EST, ERX
PUSH &R
ML ECH, EST
CALL CrackmeC.B8481EDB
MOL ECH, DWORD PTR D5:C[ESI]
MOL EDE, DWORD PTR DS: LECK+4]
Mou CL, EVTE PTR DSz [EDR+ESI+E]
LER EHH.DMDRD FTR DZ: [ED=+ESI]
®OR_EDI,EDI
TEST CL =}
RT CrackmeC.B04E261F
NDU EHH OWORD PTR O5: [ERx+231

MO _ED:, OWORD PTR 05 CEA:]

CrackmeC.<ModuleEntryFoint >

ntdll.770ZEL11S
kernel32.BaseThreadIn it Thunk

ASCII "Congratulations that

kernel3z.BaseThreadInitThunk

kernel3z2.BaseThreadInitThunk

CrackmeC.<Modu leEntryPaint >

kernel32.BaseThreadln it Thunk

kernel32.BaseThreadIn it Thunk

kernel3z2.BaseThreadInitThunk

ASCII ™I"m sorry but that is

kernel32.BaseThreadIn it Thunk

ASCIT "I'm sorry but that

is wr

kernel32.BaseThreadIn it Thunk

kernel32.BaseThreadIn it Thunk

iz corred

wrongt™

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/613.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/77.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/86.png

So address 4025D5 jumps to the good boy message, so that’s the jump we’d like to take. Let’s try clicking
on the other jumps to see where they lead us...maybe there’s an earlier jump that takes us to the good
boy message:

dInitThunk

dInitThunk

II "I'm u but that

as does this one, and if you keep clicking on the jump instructions, you'll notice the jump at address
4025D5 is the only one that jumps to the good boy. So basically, we want to keep all jumps that jump to
the bad boy from jumping, and force the jump to the goodboy into jumping. If we keep scrolling up, we
reach our first call/compare instructions at address 402582:

ThreadInitThunk

DWORD FTR
= EI

vy LeEnta

ThreadInitThunk

. readIn it Thunk

MO
IE

That's not exactly normal behavior, but when we scroll up a little more we see another call compare group.
| have placed a BP on both of these calls:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/97.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/106.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/1110.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/125.png

eThreadInitThunk

eThreadInitThunk

@ | C\Users\Randemh\Desktop\CrackmeConsole.ex :

llelcome to AR Crackme #1
Please enter the correct serial:
12121212

and Olly breaks at the first call:

Start single stepping and you will notice that the jump at 40256F jumps the second call. Hmmm, this gives
us an indication that this second jump may not be the password checker after all, but maybe some sort of
routine if our password does not meet certain specs, like too short or too long? Whatever, let's keep single
stepping:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/136.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/146.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/155.png

YTE PTR D%

Let’s set the zero flag and see what happens:

wrongt™

Go ahead and run the app and we notice that we have found our first potential patch:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/167.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/176.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/186.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/196.png

1 | CAUsers\Random\Desktop\CrackmeConsole.e

llelcome to AR Crackme #1
Pleasze enter the correct serial:

Jizit http: - cracking.accessroot.coms for everything AR

Long live the ARTeam?

Greetz & Shoutoutz to Whitefire for hosting our forum, forum.e
arena.com, and the ARTeam

Prezs any key to continue . . .

Now, patching the jump where we set the zero flag may work, or may not work. It's hard to tell. What if our
password is too short? Too long? A different password than the one entered. This patch is not a very good
patch as we don't really know what we've done, we just know it happened to work in this case.

Let's look at this code a little closer, using the levels we learned in the last tutorial, and try something not
so LAME. Scroll back up to the jump to the bad boy that we patched and let’s try to figure out why we
would have jumped had we not patched it. Notice that | have also placed a comment on the jump so | can
remember it later (if you recall, highlight the line and hit ‘;’ to add a comment).

412F 48

[ECI],BVTE PTR

412F 4@

Jump to bad boy

41 ZF 4@

| usually preclude all of my comments with a ‘###’, this way, later, when using other tools that fill in the
comments column for us, it's easier to find my own comments- they stand out more. You can do whatever
you like though.

Now, let’s look just above this jump and see if we can figure out what caused it. Here | have marked the
first section above the jump:

yw but that is wro

Here we can see some SBB instructions with a compare. This code doesn't really mean a lot here to us as
we have no idea what any of it pertains to, so let's go up to the next section and see if we can start making
some sense of it:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/207.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/2110.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/227.png

aade25A2 | 3B05 CHMP EDi, EBFP
@a4825A4 | SBCA MOU_ ECH, EOX Crackmet. BB4EE4HS
BE4EZEAS |~ 72 B2 JE SHORT Crackmel.BB4B25AR
BE4EZEAS | SECO MOU - ECH, EBP
BE4HZEAA | SE7CE4 43 18 CHP OWORD PTR SS5:[ESF+481, 10
BE4EZEAF | SE7424 34 Moy ESI : +
BEAEZEES |+ 73_Bd N
BE4EZEES | 807424 34 LEA ESI,OWORD FTR S5: [ESF+341
BA4EZEES | 230 “OR_EA, EAX Crackmet. B8412F40
BA4EZEEE | F3:R6 REFE CHMPS EYTE PTR ES:[EDI1,BYTE PTR DS:
BA4EZEED |+ 74 BE JE SHORT CrackmeC.B8462504
BB4BESBF IBCB =] = = I ={wl s L (v T s I] = W
@a4825C1 | 9308 FF SEE EAM, -1
BA4825C4 | 3BCS CHP EAX, EBX
BA4EZECE |~ 75 13 JHENSHORT Crackmes. BA48250E #at Jump to bad boy
BR4EZECE | | 3E0S CHP_EDX, EEBP
BE4EEECA || 72 BF JE_SHORT Crackmel.@84B82508
BE4EZECC | | 330 ®OR EFH, EAR Crackmel. B8412F40
BA4EZECE | | 2BOS CHF EDX,EEP
BE4EZE08 | | BFISCH SETHE AL
BA482E03 | | 2BCE CHF_EAX, EBX
BE4GZE0S | v| BFE4 CFAZGEED JE_CrackmeC. BA452807
BA4EZE0E | 68 48E24BEE PUSH CrackmeC.B048E243 ASCIT "I'm sorry but that is wrongt™
BA4EZ5EA | 63 RABZF4198 PUSH CrackmeC.B8412FAG
£a4825E5 | ES REF4FFFF CALL CrackmeC.@@481R96
o ere ere e 0 e ere e g 0 a 0] e e REP P 0]
ared g SAVS e e ee g e 0]0) REP ad ee a a
Intel x86 Instructions |-G
l File Edit Boockmark Options Help
Qontents| Index | | Print |
REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix
Lee afen
F2 AF REPNE SCAS m32 Find EAX, starting at ES:[(E)DI -
Description

Repeats a string instruction the number of times specified in the count register ((E)CX) or until the indicated condition
of the ZF flag is no longer met. The REP (repeat), REPE (repeat while equal), REPME (repeat while not equal), REPZ
(repeat while zera), and REPMNZ (repeat while not zero) mnemeonics are prefixes that can be added to one of the string
instructions. The REP prefix can be added to the INS, OUTS, MOWVS, LODS, and STOS instructions, and the REPE,
REFNE, REPZ, and REPMZ prefixes can be added to the CMPS and SCAS instructions. (The REPZ and REFPNZ
prefixes are synonymous forms of the REPE and REPMNE prefixes, respectively.) The behavior of the REP prefix is
undefined when used with non—string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of instructions, use the LOOP
instruction or another looping construct.

All of these repeat prefixes cause the associated instruction to be repeated until the count in register (EJCX is
decremented to 0 (see the following table). (If the current address—size attribute is 32, register ECX is used as a
counter, and if the address—size attribute is 16, the CX register is used.) The REPE, REPNE, REPZ, and REPNZ
prefixes also check the state of the ZF flag after each iteration and terminate the repeat loop if the ZF flag is not in the
specified state. When both termination conditions are tested, the cause of a repeat termination can be determined
either by testing the (EJCX register with a JECXZ instruction or by testing the ZF flag with a JZ, JMNZ, and JMNE
instruction.

Repeat Conditions

Repeat Prefix Termination Condition 1

REP ECK=0
REPE/REPZ ECK=0
REPNE/REPNZ ECK=0

Termination Condition 2
None
ZF=0
ZF=1

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require initialization because both
the CMPS and SCAS instructions affect the ZF flag according to the results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this happens, the state of the
registers is preserved to allow the string operation to be resumed upon a return from the exception or interrupt
handler. The source and destination registers point to the next string elements to be operated on, the EIP register
points to the string instruction, and the ECX register has the value it held following the last successful iteration of the
instruction. This mechanism allows long string operations to proceed without affecting the interrupt response time of
the system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is prefixed with REPE or REPME, the
EFLAGS value is restored to the state prior to the execution of the instruction. Since the SCAS and CMPS
instructions do not use EFLAGS as an input, the processor can resume the instruction after the page fault handler.
Use the REF INS and REP OUTS instructions with caution. Mot all I/O ports can handle the rate at which these
instructions execute.

A REP STOS instruction is the fastest way to initialize a large block of memaory.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/237.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/248.png

It's not horribly clear, but if you have any experience with assembly you know that the REPXX statement
repeats like a loop until ECX = 0. The instruction after the REPXX, in this case CMPS, is what is repeated.
Taken together, this statement means “Repeat comparing two memory addresses, incrementing this
address each time through the loop, while the zero flag remains equal.” In basic terms, it means “compare
these two strings.” In reverse engineering, anytime we compare two strings, red flags should go off. It is
not done very often in an app, and checking a serial number/password/registration key is one of the few
times itis. Let's place a BP on the first line of this section at address 4025B5 and re-start the app. Enter
our password and Olly will break at this breakpoint:

v but that

Now notice that the first instruction, LEA ESI, DWORD PTR SS:[ESP+34], is Loading an Effective
Address into ESI from the stack. The SS: denotes the stack, the [ESP+34] denotes the position on the
stack, in this case the 34th byte past whatever the ESP register is pointing to, and the LEA instruction
means basically load the address of something, as opposed to the contents of the something. If we look at
the middle bar (where the blue arrow is pointing) we can see that SS:[ESP+34] equals address 0012FE88,
and at this address is stored our ASCII password. Single stepping once over this line shows ESI being set
equal to our password (that is currently on the stack):

FFFFFFFF]
FFFEFFFF]

The next instruction sets EAX to zero, and then we hit the REPE instruction. In this case, the contents of
memory at the address stored in ESI is compared with the contents of the memory address stored in EDI:

El

The ECX register is then lowered by one, the compare goes to the next memory location in both EDI and

ESI, and the loop will end when ECX = 0. In this case, if you look above you can see that ECX is set to 8

(which happens to be the length of our password) so this loop will go through all 8 digits of our password,

each time comparing a digit with a digit from the corresponding location after EDI. But wait...what are we

comparing to? If we look at the registers window again we see that EDI points to an address on the stack
that has some ASCII 7s in it. Let’s see this on the stack. Click on the adddress next to EDI, right click on it
and choose “Follow in stack™

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/257.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/268.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/279.png

Increment Plus

Decrement Minus
Zero

ettol

Maodify

election to clipboard

vy all registers to clipboard
Follow in Dump /
Follow in Stack
View registers

View 3DNow! registers

View debug registers
HW break [ESP]

Appearance

The stack window then jumps to the referenced address, in this case 0012FE6C. At this address (and we
can't help noticing at the next as well) we see a string of “37"s. Looking at our ASCII chart we can see that
37 is equal to “7" which we saw in the registers window is in the EDI register:

Well, it doesn't take a rocket surgeon to see that our inputted password is being compared with a
hardcoded ASCII string of all “7"s. There are exactly 8 of them on the stack (we got lucky that we
happened to enter a password that was the same length as the hard-coded password @). These eight
“T"s are compared, one by one, with what we entered as a password. If we get through all 8 of them being
equal (equal to 7 that is) then we will take the next jump. Hmmmmmm. Our entered password is compared
with eights “7"s. This sounds to me like the password could be eights “7"s. Let's restart the app and try it:

Welcome to AR Crackme #H1

Please enter the correct serial:
PEETEEI?

drumroll please....

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/288.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/297.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/306.png

i | C\Users\Random'\Desktop\Jason\Tuts\Intro to Reverse Engineering\104CrackmeConsole.exe

llelcome to AR Crackme #1

Pleaze enter the correct szerial:
TINEI?

IChecking serial

Congratulations that iz correct?

Jizit http:- cracking_accessroot.coms for everything AR
Long live the ARTeam?

Greetz & Shoutoutz to Whitefire for hosting our forum, fForum.exetools_com,. tech—|
arena.com,. and the ARTeam

Press any key to continue . . .

And we got it &% . So, looking a little farther than we would normally patch has revealed the password,
which is frankly far better than patching an app not knowing if it will actually truly patch it or not. This is the
benefit of patching at a NOOB level as opposed to a LAME level.

| just wanted to show you an example of going through code and making comments. Unfortunately, when
writing tutorials, you have to understand the app at a pretty deep level. Here is a picture of the core
section we were discussing with my comments in it:

As you can see, a lot goes into understanding the way an app works &

-Till next time.

R4ndom

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/318.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/xxx.png
Random
Rectangle

