The Legend Of Random

Programming and Reverse Engineering

Home Tutorials Tools Contact Forum Challenges

R4ndom’s Tutorial #10: The Levels Of Patching

by R4ndom on Jun.29, 2012, under Beginner, Reverse Engineering, Tutorials

In this tutorial we will be discussing the different levels to patching a binary. This tutorial is a little on the
long and detailed side, but we will be covering a lot of ground, some of which is not that easy. | wanted to
give you an example of deep analysis on a binary, and what it entails. You may not understand a great
deal of it, but it will give you a good overall view of reverse engineering. This way, in future tutorials, you
will have a frame of reference. We will be studying the same crackme as last tutorial, Crackme6 by “TDC”,
included in the download.

You can download the files and PDF version of this tutorial on the page.

Overall, it's not a tough crackme as we saw in the last tut, but we will be doing some advanced analysis on
it, preparing for future tutorials. So sit back, grab a coffee/cigarette/candy bar/hypodermic needle, whatever
gets you going, and let’s get started...

There is a sort of an unwritten rule of reverse engineering (and especially cracking) about the different
levels of patching a binary. There are basically four levels of patching a binary (and I'm sure at least half of
every reverse engineer out there will argue with me on that number g) Of course, because everything
sounds better as an acronym, | have come up with one for all four levels. So, without further ado, here is
your guide to the levels of patching, and what they mean:

Level 1 - LAME

The LAME method, or Localized Assembly Manipulation and Enhancing method, is what we have gone
over so far. It means find the first place in the code that you can find the magic compare/jump decision
and either NOP it out or force it to jump. This method has worked magically for us so far. Of course, we
have been working on simple crackmes (half of which | coded specifically for the tutorial). Unfortunately,
most apps out there aren’t quite this easy. There are many things that can go wrong with the LAME
method, including:

1. Many, many apps do more than one check for if the program is registered, always from different parts of
the app, so just because you patch one does not mean there won’t be several more (I think 19 separate
checks is the most I've seen). And sometimes these other checks aren’t done until some other event
happens, so you will find yourself going back to the same app searching for alternative checks to patch.

2. Many programs also do many special tricks to avoid the compare/jump combo being obvious. Whether
it's performed in a DLL, performed in another thread, modified polymorphically, there are many ways
around making this obvious.

3. Sometimes you end up patching an awful lot of code. Maybe you patch 7 checks for if we're registered,
NOPping out other checks and so forth. This can get confusing and, let’s face it, it's not very elegant.

4. You don't learn a heck of a lot only using this method, and if you're reading these tutorials, it's probably
because you're interested in the topic and want to learn.

All that being said, sometimes the most elegant solution, which is often also the simplest, is a single patch
on the compare/jump combo, so don’t take me the wrong way and think you should never use it. In fact, of
the many programs | have reverse engineered, | would guess 25-40% were solved using a simple patch
like this. So it can be a powerful method

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/beginner
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
http://thelegendofrandom.com/blog/challenges
Random
Rectangle

This method, the Not Only Obvious Breakpoints method usually involves going one step deeper than the
LAME method. It generally involves stepping into the call right before the compare/jump combo to see
what is causing the compare/jump combo to come out the way it does. The benefit of this technique is that
you have a lot more chance of catching other parts of the code that will call this same routine to check for
registration, so patching in one place can really patch in several- every location that the binary calls the
check registration routine. Of course this method also has some shortcomings, some of which are:

1. Sometimes this routine is used for more than just a registration check. For example, it may be a generic
function that compares two strings, returning true or false whether they match. In the case of our serial
matching, this is the place to patch, but what happens if this same method is then called with two different
strings and we’ve patched it to always return true (or false, as the case may be)?

2. This method requires more time and experimentation to determine what the best options are for
returning the correct values. This takes time and skill.

This is the first method we will use in this tutorial.

The SKILLED method, or Some Knowledge In Lower Level Engineered Data, is similar to the NOOB
method except it means you actually go through the routine and completely reverse engineer it to see
exactly what's happening. This gives many benefits such as understanding any tricks being used (like
storing variables in memory for later retrieval), offering many more places to patch that are easier and less
intrusive, and giving an insight into how the program works. It also gives you as a reverse engineer a lot of
knowledge that can be used in the future, not to mention your assembly language skills.

The main shortcomings of this method are that it's more difficult and takes more time. My suggestion to
you is to try this method on at least a couple programs, because nothing will make you a better reverse
engineer than spending time digging through code, the stack, registers and memory, trying to get a feel for
what the author was trying to do. This is the method we will be using in the last part of this tutorial.

Thought of as the holy grail of cracking, Serial Keygenning In Low-level Languages, Stupid
means that you not only have gone through and figured out exactly how the registration process is
performed, but you are also able to re-create it. This allows a new user to type in whatever username they
want, and the keygenner’s code will spit out a proper serial that will work with this binary. The general way
a keygen is made is to try to use the programs own code against it, meaning copying the code the author
used to decrypt serials and use it to encrypt them. This code is usually put in some sort of wrapper
program made specifically to accept ripped code (it provides the GUI and such.)

The ultimate in skill$ is if the code cannot be ripped from the app and must be custom coded to provide a
viable serial. This means you must completely understand how the app decrypts the serial and compares it
to what you have entered. You then must code your own program that performs this same routine, only in
reverse, many times written in assembly language.

Obviously, the major shortcomings with this method are the sk1li$ involved.

So, in light of our new understanding of the levels in reverse engineering...

Let’s re-start the app and run it again. Set the breakpoint on GetDIgltemTextA (see last tut), enter a
password (I entered “12121212") and click “Check” so Olly breaks at our GetDIgltemTextA:

DEMIED
4

Edit",par

Now let's get some info on GetDIgltemTextA:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/255.png
Random
Rectangle

File Edit Bookmark Options Help

N I N
GetDIgltemTE:ﬂ [Quick Info | [Overview |

The GetDlgltemText function retri he title or text associated with a control in a dialog box.

UINT GetDigltemText(
HWND hDlg, /f handle of dialog box
int n/DD iu:Ienti control
s of buﬁPr fllr tex
I maximurr

k

Parameters
hDlg
Identifies the dialog box that contains the control.

es the identifier of the trol wit itle or text is to be retri

Return Yalues
If the function su , the return value s
including the terminating null character.

If the function fails, the return value is

Remarks
The GetDIgltemText function s e to the control.

See Also
GetDlgltemint, SetDlgltemint, SetDigltemText,

Here’s the important parts for us: One of the arguments is a pointer to a buffer where the password will be
stored (IpString), and the return value in EAX is the string’s length:

Return Values
If the func SUC he Wz he number of charact pied to the buffer, not
including the terminating null character.

If the function fails, the return value

The pointer to the string buffer, as you can see above at address 40125a, is 40205D (Olly puts a comment
of ‘Buffer=" because he can guess the arguments). That means that this function will copy our dialog text
into a buffer starting at 40205D, and will return the length of this string in EAX. So, in our case, the
password entered, “12121212" will be retrieved and returned with the length of the password in EAX, in
this case 8. Now, if you look at the next two lines you'll notice that this value is compared to 0x0B (11
decimal) and the program will jump if EAX is less than this amount. This really means that if the length of
our password (EAX) is less than 0xOB (11 digits) then jump. You'll notice that if we don’t jump, we will fall
through to the bad boy, so in effect, this means our password must be less than 11 digits:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/265.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/276.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/285.png

See!! We have learned something already- our password must be at most 11 digits & . Now since our
password was less than 11 digits we will go ahead and take the jump. (If you happened to putin a
password longer than 11 digits, restart the app and put a new one in less than 11 digits, then step to
where we are here.)

Next you will notice that EAX, which still contains the length of our password, is tested if it's zero, and if it's
not, it jumps past the second bad boy. So now we know that the first bad boy is for situations where our
password is longer than 11 digits, and the second bad boy is if it's zero digits.

Now notice that, after we take the jump, the next two lines, starting at address 401282, PUSH EAX (the
password length), and the address 40305D (the buffer that our password was stored in) on to the stack.
Looking at the stack we can see this in action:

Notice first (at address 18FABO) the length (8) was pushed and then at address 18FAAC the address
40305D was pushed, which Olly has helpfully shown you is “12121212", or our password. Now we know
that our password is stored in memory at address 40305D. This will be important later @ . Later, Olly will
refer to these two values as ARG.1 and ARG.2, as they are arguments passed to this function. Now after
these two values are pushed, we will call the main registration routine (we know this because it's the call
right before the all important compare/jump combo, so it's outcome will determine whether we jump to the
good boy or bad boy), at address 401298.

"Edit".parent=

"Edit’ nt=

Keep Olly paused at the CALL line but notice after the call, EAX is OR’d with itself (will set the zero flag
depending on whether EAX is zero or not) at address 40129D and will jump over the good message if EAX
is not zero. This means that the registration routine called at address 401298 will, at some point, put a
value into EAX and RETN this value, which will then be checked if it is zero or not, and if it is not, we will
show the bad boy message. So we must make sure that in this call, EAX equals 0 when it returns! If we
can accomplish this, it would be the only patch that would be needed (as well as the password being
between 0 and 11 digits restriction, but that's an easy patch). Let's go ahead and step into the registration
routine at address 401298 and get an overview:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/294.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/303.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/313.png

HA4E1421

481456

CECH+EAX]
L0OL

Wow, that's a lot to take in, especially as you're probably only half way through your assembly book & .
But it is not impossible. The technique | usually use is to go to the end of the routine, knowing that EAX
must equal zero when it returns, and see what will accomplish this and what will keep this from happening,
and work my way backward. Scroll down till you see the RETN of the function:

E'THE-— EAX will equal 1

Here, we can see that we definitely want to avoid the instruction at 401510 as it sets EAX to 1 right before
returning. You can also see that there is a red arrow pointing to this line, so that jump will want to be
avoided as well. Now if we look up a little we can see where EAX is set to zero, and the way through the
end of this routine to return it as such:

'fIEEEE' EAXIssetto O

and we will skip EAX =1

and EAX will equal 0 when
F we return, which Is Good

If we get to line 4014FB, EAX will be set to zero (XOR’d with itself), the JMP instruction will jump over the
bad instruction at 401510, and the routine will return with EAX equal to zero & . Now let’s follow the first
jump we saw up (the jump that came to the MOV EAX, 1 bad instruction at address 401510) and see
where it is coming from:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/323.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/332.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/342.png

40147C is our bad jump. We want to avoid this jump or we are definitely getting the bad message. OK, we
now have some general knowledge of this routine, and for a level 2 crack we would stop here and patch to
make sure EAX always returns a zero. How would you do that? Well, | am going to leave that up to you (it
will be at the end for homework 8) Though rest assured that | will give you the answers... But do
understand that patching at this level is already better than our initial patch as 1) we only need one patch
and 2) if this routine were to be called from anywhere else in the program, we would still get the good
message (& .

Now, take a break and think about how you would patch this. Remember, EAX must return as zero. The
reason | am letting you attempt this is because there are many, many NOOB patches to accomplish this,
and | want you to start thinking like a reverse engineer! If you need a hint, look in the homework section at
the end. And if you can solve it, you are a true NOOB!!!

When you are done, and ready to move on to even more detailed analysis, read on...

I understand that you are still a beginner, but | wanted to give a taste of what patching on a deeper level
looks like. If you don't feel prepared for this, or get completely lost, don't fret. This is just to give you an
idea. We will be going back over everything in this section in future tutorials. You may ask yourself, what is
the purpose of going deeper into this code if, everywhere in the app that calls this routine, it will be
patched? Well, for starters, what if there are varying degrees of registration, for example “Private”,
“Corporate”, “Enterprise”... This routine may make this decision based on logic inside this routine. Another
reason you may want to investigate further is to eventually make a keygen for it. You would need to
understand this code to do that. Now, let’s start on patching on a SKILLED level and go back up to the
beginning of this routine and examine it:

First, there is some typical pushing of registers and creating some space on the stack for some local
variables. The values in ECX and EDX are pushed on to the stack so we may use these registers without
overwriting what was in them (they will be popped off the stack at the end of the routine to return them to
normal). We then get to address 40142A, which moves the local argument on the stack (which is the
address of our password) into EAX. If you look at the regsters window you'll see that EAX holds the
address 40305D, which is the address of our password. Next comes a menacing looking line:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/352.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/361.png

XOR DWORD PTR DS:[ECX+EAX], 1234567

what this line means is add ECX (which is zero) to the address of the beginning of our password (which is
stored at 40305D — remember that address?), then take the DWORD (4 bytes) at this location and XOR it
with the hex value 1234567. Since ECX is zero, adding this to the address of our password doesn’t do
anything to that address, so we are dealing with the address starting with the first digit of our password. In
simpler language, what this line means is “get the first 4 bytes of the password and XOR it with 1234567,
storing this new value back into the same memory address which is the beginning of our password.”

We can watch this happen; first, making sure we are still paused on this line of code at address 40142D,
look right above the dump window and it will tell you what address ECX+EAX is (40305D) as well as what
values are there (32313231) which in ASCIl is “2121" (remember the endians &):

Now highlight the first line that says “DS:[0040305D]=32313231", right-click and select “Follow in dump” so
we can see the actual memory where our password is currently stored:

y pane to clipboard
Modify data

Fellow address in Dump

Appearance

Now the dump window is showing memory, starting at address 40305D. Here, the first 8 bytes is our
password. Now remember, the line of code we are on is going to take the first 4 bytes at this address
(31,32,31,32) and XOR them with 0x1234567, storing the result back into this memory location:

Go ahead and hit step over once and you will see the first 4 bytes of our password changed, XOR’d with
0x1234567.

Now, let's continue down the code to the next line:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/371.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/381.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/391.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/402.png

This line, AND BYTE PTR DS:[ECX+EAX], OE, is another menacing looking line. We know what ECX +
EAX is address 40305D, which is the address of our former password. Now we’re going to AND OxOE with
the BYTE at this address and store the result back into this address. This means that the first digit of our
former password that is stored at 40305D is going to be ANDed with oE and stored back in that first
position. Looking at that helper area above the dump helps point this out:

Itis telling us that the address that will be affected is 40305D, and the value at that address (currently) is
56. Now go ahead and step once and you will see that first digit change again:

ECX is increased by 4 (to point at the next set of 4 bytes) and compared to 8. This means that this loop
will run two times- the first time ECX will equal 4, the second time 8, then we will jump out of it. This means
that we are dealing with 8 bytes of code total. So the second time through the loop, we will affect the
second set of 4 bytes, ANDing them with 1234567. As you step it, keep an eye on the second set of 4
bytes:

and they will change as well. That fifth byte will also change again as it's ANDed with OxOE. After this loop,
we hit the next instruction at address 401440 that just resets ECX to zero:

Now let’s look at the next set of instructions:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/413.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/421.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/433.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/452.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/461.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/47.png

First we move the first (new) byte of our (former) password into DL (since ECX is zero again, we know we
are dealing with the first digit again, or where EAX is pointing). If you look at the registers window, you'll
see that first byte (0x06) in the EDX register:

We then add this digit in DL with whatever is at EAX + 8, or the eighth byte after the beginning of EAX,
and store it back into the eighth position:

This has added the first byte in this buffer (6) with the 8th byte in the buffer (zero) and given us 6. If our
password was longer than 8 digits, this would have added the first byte in our buffer to the next digit of our
password, but since our password is only 8 digits, this memory is set to zero. Next we increase ECX by
one (thereby moving to the next byte) and compare it to the length of the password. This just basically
figures out if we've reached the end. If we haven't, we then jump to the beginning of this loop and do it
again. This basically means we will cycle through all the digits of the password, adding the value of each
digit and storing this value in the 8th memory position. Now we realize why the password can only be 11
digits; there’s only space to hold 11 characters plus the terminating zero.

After this loop is done, we once again set ECX to zero and enter a similar loop to the first one, this time
XORing each set of 4 bytes with Ox89ABCDE.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/48.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/49.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/50.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/511.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/521.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/531.png

It also then adds up all the bytes and keeps this total in the ninth byte. This process will be implemented
until ARG.2 equals zero. ARG.2 is the length of our password (remember it was the second item pushed
on to the stack right before calling this function?) So, this set of instructions will be run 8 times, once for
each digit of our password. And after stepping through this code, you will see the final result:

It is vitally important that you run this and watch it all happen as it will make it a lot clearer. Take time
understanding each line, what it's going to do and where it's going to store the result. You will find that it is
not as difficult as it sounds:) And don’t forget that we are making our way to that first jump at address
40147C. Here, in summation, is what we have done:

1. We XORed each set of 4 bytes of our password with the hex value 12345678 and stored them back
over top of our password.

2. The first digit was ANDed with OxOE, as well as the 5th byte.
3. We then added up the values of all of these bytes and stored this value in the 8th byte.

4. Then, we XORed each set of 4 bytes of this buffer with 0OX9ABCDEF, and stored the result back into
this buffer.

5. Again, we added up the values of all of the buffer memory contents and stored this into the 9th
memory location.

We have performed most of the magic of the protection scheme on this crackme (*phew*). Now we will
load these two values (the summation of the buffer memory contents), one at EAX+8 and one at EAX+9
into DL and DH, making EDX in our example equal to 842C. We then compare these values with the value
42DE:

Why 42DE ? Well, this is probably a hard coded password. If you think about it, if you had a specific
password, ran it through this whole operation of XOR-ing and AND-ing, it will come up with this magic
number of 42DE. In our case, seeing as EDX equals 842C:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/561.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/119.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/58.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/611.png

Unless, of course, we help Olly out a little:

And instead fall through so EAX will not be set to one and this function immediately stopped. Next we load
ECX with 9 so that we may access the 9th digit of our buffer, move the contents of this ninth memory
location into DL (0x2C in this case), XOR it with itself (making it equal zero), lower ECX by one to go to the
previous location, and do this nine times:

You may wonder, as this doesn’t actually change anything in the buffer, what the point of this function is?
Well, that makes two of us. Seeing as all it's doing is zeroing out DL over and over, this almost seems like
a decoy (or a mistake Q) in the code. All in all, if this code runs or does not run, it makes no difference,
so itis dead code. We now enter short group of code that basically compares EAX with 30AC:

First, it load ECX with the summation we did earlier (0x2C in the 9th memory location and 0x84 in the 8th
memory location), XORs it with OXEEEE and compares it with 30AC. And since ECX is not equal to 30AC,
we will jump:

To where ECX is set to one again:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/621.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/631.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/641.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/65.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/66.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/67.png

This is basically a second check of the password. The reason for this is probably that a reverse engineer
with not a lot of experience (or just enough to get him/herself in trouble) would immediately patch the first
JNZ when our converted password was compared with 0x42DE above. They may not have taken the time
to go through the rest of the code, thinking this patch is all it takes. Unfortunately, this patch is obviously
not enough as the app now takes the computed value of our password, performs some more manipulation
on it, and jumps if it does not match this new value. A lot of times this method is used as a technique to
discover if someone is trying to patch the app: if we get through the first INZ with our password checking
out without patching anything, we should get through the second as well. If we don’t, we know someone
has patched the first check, so we know someone has altered the code. Many times this second jump will
go to some completely different section of code, something that looks incredibly complicated but doesn’t
actually do anything, and then eventually terminate. This is an attempt to send the reverse engineer on a
wild-goose-chase and make it harder to overcome the protection. We don’t want that, so set the zero flag
so we keep going and we hit the next two lines:

This loads the first and second memory location’s contents of our password buffer into CL and CH, which
in our example makes ECX equal to CBO08. It adds 3592 (hex) to this value and compares it with E59A. If it
does not equal this value, we jump:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/68.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/69.png

This is doing the same thing as above; performing another check to make sure we got here legitimately.
Obviously, we don’t want to take this jump either, so we help Olly by changing the zero flag again. We then
go through yet another check, this one from memory location 4014A3 to 4014AD. We skip this INZ as well,
setting the zero flag, and we end up here:

The first line, CMP DWORD PTR DS:[EAX], 7A81B008, does another check. After all of the manipulation
done on this password, eventually the first 4 bytes will equal 7A81B008. If it does not, we will jump to our
bad code:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/711.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/721.png

So helping Olly with the zero bit, we then enter another collection of checks (why not?), first performing
some manipulation on the next set of bytes and comparing them with 388DBF02, and comparing various
memory contents with hard coded numbers. This is obviously overkill on the checks, but | think the author
thought the more checks, the more protected this crackme would be & . Bypassing all of these jumps we
finally get to what we want, the JMP instructiOn at address 4014FB:

Notice that this time we fall through to the good boy message # . This is because we kept the app from
setting EAX equal to 1.

Now, you may think, “great, we've traded a single patch in our level 2 for 9 patches (all of the INZ zero flag
resets) in this new deeper analysis”, but this is not true. Not only do we understand how this works (and
have gained a lot of experience for future reversing challenges) but we can now make very solid patches
that we KNOW will work no matter what. Not to mention that it would not be very hard to find the REAL
password for this app, bypassing any need to patch anything! This is true reverse engineering, and it only
comes with A LOT of practice. And the harder the app is to crack, the more you can expect needing to get
this detailed in the code.

Again, don’t worry if you got lost; this was more to give an overview of the methods used. We will be going
over this stuff again. in the mean time, here’s some...

As stated earlier in the tutorial, see if you can come up with a way to patch this app using the NOOB
technique. This means finding a way to step into the call that performs all of the manipulation on the
password, and find a way to bypass all of it. You don’t need to understand all of the manipulations being
done on the password, just find a way to make the app skip it and still come out to the good boy.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/731.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/741.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/75.png

If you need a hint, click
Super Insane Extra Credit: Can you find the hard coded password?
-Till next time

R4ndom

http://thelegendofrandom.com/files/tuts/hints/hint10.html
Random
Rectangle

	thelegendofrandom.com
	R4ndom’s Tutorial #10: The Levels Of Patching « The Legend Of Random

