
Modifying Binaries: Making a Window Non-Closeable
by R4ndom on Jul.10, 2012, under Intermediate, Tutorials

Introduction

In this tutorial I will discuss various ways of making a window non-closeable. This can come in handy in a
variety of cases. Perhaps you would like to display an inspirational quote in a window, “Just because you
are unique, does not mean you are useful”, for example. Most users would close this window before really
having a chance to think about these words of wisdom. Making the window non-closeable helps solve this
problem. Or perhaps you would like to remind a co-worker that there is more to life than work, so send him
a game (like “Kill Bunnies With Your Genitalia II”) and make it so it won’t close, thus reminding him that
there are always alternatives to working yourself to death.

Types Of Windows

Because Windows has different types of windows, accomplishing this feat is slightly different, depending
on which method was used to create the window. There are basically three types of windows; A normal
window, A dialog box, A dialog that is acting as the main window. I will explain these three cases
separately, as the process is different for each. I have included a binary representing all three types. Let’s
start with…

A Normal Window

If you open an app in Olly and do a search for All intermodular calls and see “RegisterClass” or
“RegisterClassEx” (providing the app is not packed), then you can assume that this is a probably normal
window (meaning not a dialog box). I have included the file “Guru.exe” in this download that uses this type
of window. It basically just creates a window and displays a helpful message in it:

Loading the app in Olly and doing a search for intermodular calls gives us the following:

The Legend Of Random
Programming and Reverse Engineering

Login

 Remember me

Recover password

Recent Posts

Modifying Binaries: Making a Window Non-
Closeable

Update to Tutorial #13 Challenge

A Pre-challenge to Tutorial #13

R4ndom’s Tutorial #12: A Tougher NOOBy
Example

All is Right With The World, Again

Recent Comments

nwokiller on A Pre-challenge to Tutorial
#13

razor8 on A Pre-challenge to Tutorial #13

ludkiller on A Pre-challenge to Tutorial #13

R4ndom on R4ndom’s Tutorial #12: A
Tougher NOOBy Example

Unbelievr on R4ndom’s Tutorial #12: A
Tougher NOOBy Example

Archives

July 2012

June 2012

May 2012

Categories
Beginner

Intermediate

Random's Ramblings

Reverse Engineering

Tools

Tutorials

Uncategorized

Meta

Register

Home Tutorials Tools Contact Forum

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/intermediate
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/120.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle

Notice that there is a RegisterClassExA. That’s what we want. Double click:

And here we see the call to RegisteClassExA. Notice right before the call is a PUSH EAX. Getting help on
RegisterClasExA will help with that:

RSS Feed

Log in

Entries RSS

Comments RSS

WordPress.org

Subscribe

Enter your email to subscribe to future
updates

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/220.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/316.png
Random
Rectangle

So RegisterClassExA takes one argument- a pointer to a WNDCLASSEX structure. The preceding PUSH
EAX was this pointer. Here is what the API has to say about WNDCLASSEX:

typedef struct _WNDCLASSEX {
UINT cbSize;
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HANDLE hInstance;
HICON hIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCTSTR lpszMenuName;
LPCTSTR lpszClassName;
HICON hIconSm;
} WNDCLASSEX;

One thing you should know is that if your app calls RegisterClass instead of RegisterClassExA, the
WNDCLASS structure will be used instead of the WNDCLASSEX structure. The only difference between
the two (that we care about) is the the ExA version starts with a cbSize element, whereas the WNDCLASS
does not have this element.

The element of he WNDCLASSEX structure we want is the ‘style’ element, which is the second argument
(the first in WNDCLASS). Let’s see this structure for ourselves. Set a BP on the PUSH EAX at address
40109D and re-start the app:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/416.png

We can see that the argument is pWndClassEx and is equal to 0018FF44. We can also look in the status
window and see that in fact EAX is equal to this:

Now, look over at the stack. We can see the start of the WNDCLASSEX structure beginning at stack
address 18FF44:

Here, the first argument is 0×30, which is the cbSize argument. So we know the size of this
WNDCLASSEX structure is 0×30 bytes. Now single step over the PUSH EAX statement:

and notice that this pointer has been pushed on to the stack:

So, here is our first argument (we don’t care about it):

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/56.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/66.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/76.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/86.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/96.png

And here is the style argument and the pointer to WndProc. I added the pointer to WndProc because
sometimes you want to find where the main WndProc is and this is a good way to do it (though that’s
material for another tutorial!).

We can see that the style is set to 3. This is the default look of the window and means ‘show me a
standard window, with all the standard stuff’. Now what we want to do is change this and add a simple
command to it that Windows uses to grey out the close button. The constant is CS_NOCLOSE and it
disables the Close command on the System menu. CS_NOCLOSE is equal to 0×200. Generally, when you
want to combine attributes you OR them together, so that’s what we need to do here. We need to OR 0×03
with 0×200 which equals 0×203. Right-click on the stack line at address 18FF48 and choose ‘modify’:

Now let’s change this to our new attribute setting:

and click OK. We now have our new setting on the stack:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/106.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1110.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/124.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/135.png

Go ahead and run the app:

and you will notice that you may no longer close this window. Added to the fact that the window can not be
covered by another window, it certainly makes it’s point. Of course, the user can always minimize it, but
that icon just sits there… calling out…wanting to be opened…

If we want to patch this binary to always do this, we simply need to find where this style value of 3 is being
pushed on to the stack and replace it with a 0×203. Looking up a couple lines we can clearly see the
culprit:

So patching this line to MOV [LOCAL.11], 203 will patch the app for good .

A Dialog Box As Main

Sometimes apps are set up where the main screen is in fact a dialog box. This is helpful in that you can
allow Windows to handle a lot of the overhead having to do with buttons, edit boxes etc. Go ahead and
load “Helpful.exe” into Olly. Run it and you will see a dialog box:

Notice that clicking the CLOSE button or the ‘X’ on the title bar both close the dialog.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/144.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/154.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/163.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/125.png

Doing a search in intermodular calls shows that this app has a RegisterClass (RegisterClassExA), so we
know it sets up it’s own window (as opposed to a true dialog opened by another window which will not
have a register class, as we will see…):

We will start the same way we did with the previous example. Go to the RegisterClassExA and place a BP
on it and re-start the app:

Now look at the stack window:

Notice that most everything is the same, except this time there is an argument called “DLGCLASS”. This is
to tell windows that this dialog should be our main program window and to send messages to it just like a
normal window.

Go ahead and modify the stack and turn the 3 into a 203 so we can grey out the close button:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/223.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/317.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/417.png

You can also patch the instruction at address 401203 to always load in 203 as our value:

Typically with dialog boxes there is a button that will close the dialog along with the normal ‘X’ on the title
bar. Sometimes it’s called ‘OK’ or ‘Cancel’, or in our case it’s called ‘Close’:

What we need to do is get rid of the functionality that allows the dialog to be closed by a button. The
easiest way to do this is to find the DestroyWindow call by looking in our intermodular calls again:

Notice that right before the DestroyWindow call, there is a JNZ instruction that allows the program to skip
this call.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/57.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/67.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/77.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/87.png

If a button is pressed that sends a quit message, this call will not jump and DestroyWindow will be called.
So what we want to do is make it ALWAYS jump so that DestroyWindow is never called:

Here, I just hit the space bar on the line and changed the JNZ to a JMP. Now, any button on the dialog
that tries to close the dialog window through a button will fail, as it will always jump over the call to
DestroyWindow. Go ahead and try it and you will notice that the close button does nothing and the ‘X’ in
the title bar is greyed out

A Standard Dialog Box

A standard dialog box is usually called from another window (think of the “Are you sure” dialogs with the
OK and CANCEL button). Though this is the norm, they do not always have to be called from another
window. The “Helpful2.exe” binary simply opens a dialog with no parent, though the techniques on this
dialog will work for dialogs called from another window as well. Go ahead and run the app:

You will notice that it looks almost the same as the last one, except this time there’s a menu added:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/97.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/107.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/1111.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/126.png

I wanted to add this to show you how to defeat menu items as well. Loading the app in Olly is where you’ll
notice the difference though:

There is very little code. Notice that a window is not created like it was in the last two examples. There is
no WNDCLASS and no call to RegisterClass. This looks more like the code you would see in a bigger app
when the app decides to open a dialog box. Because there is a parent window already created, you do no
have to go through the process of creating a whole new one from scratch.

If you do a search for intemodular calls you will notice that there is no RegisterClass, so changing the
WNDCLASS structure to add a NOCLOSE attribute is out of the question:

Fortunately, there is a very simple way to stop not only the ‘X’ in the title bar, but also any child that tries to
close the window, including buttons and menu items. Even though this binary does not have a
RegisterClass, it does have an EndDialog. EndDialog is called whenever the program wants to close a
standard dialog window. All we have to do is make sure this method is never called.

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/127.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/136.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/145.png

No tags

Looking at intermodular calls window, double click on EndDialog:

Just like in the last example, there is a JNZ right before the call to EndDialog that, if equal, will allow falling
through to the EndDialog call. What we want o do is simply change this JNZ to a JMP like we did in the
last example:

Go ahead and run the app and you will notice the dialog cannot be closed.

-Now go out and do some good.

R4ndom

Leave a Reply

 Name

 Mail (will not be published)

 Website

http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/155.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/164.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/07/173.png
Random
Rectangle

	NvbS9ibG9nL2FyY2hpdmVzLzExNzIA:
	form1:
	s: Search keywords
	input3:

