
DLL Injection – A Simple Message Box « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1656[8/13/2012 10:53:02 AM]

DLL Injection – A Simple Message Box
by R4ndom on Aug.13, 2012, under Intermediate, Tutorials

Requirements

In this tutorial, we will go over adding a message box using DLL injection. This is meant to be a gentle
introduction to the subject and not a detailed analysis (which will be in later tutorials).

For this tutorial, you will need OllyDBG v.1.10, IIDKing, and MASM. IIDKing is included in the download of
this tutorial, available on the tutorials page.

You may also want to use an IDE for the assembly- I am using RadASM which you can get here. You can
also download MASM on the RadASM site. You may also want my version of OllyDBG if you want the
tutorial to match your version. You can get that on the tools page.

Lastly, because of the nature of DLL injection, your virus scanner may give a false positive on the
downloaded files, or files you create during this tutorial. Because many viruses use the technique in this
tutorial, the false positive is to be expected. If you downloaded the tutorials directly from my site, you have
nothing to worry about as all files have been scanned (many times). If, however, you do not download from
my site, you may run the suspicious file through www.VirsuTotal.com. The benefit of this site is that it runs
the file through the top 42 virus scanners, instead of just one. It is a good way of detecting false positives.
Generally, if VirusTotal shows less than 3-4 positives, I consider it safe. Any more than that and I run it in a
virtual machine, as the file may be infected.

Introduction

If you have read my other tutorials on modifying binaries, you know that you can add functionality to an
executable by modifying the code directly, using code caves. This method is perfectly legitimate, if not a
little time consuming. There is an alternative to this method, however, in that your added functionality code
can be put into a separate file, a DLL file, and this code can be called when the target app is loaded. This
saves the trouble of finding a code cave, worrying about offsets etc. Though DLL injection also has it’s
limitations (especially when using resources).

In this tutorial we will be adding a Message Box to a freeware program called “ColorPicker”. It is a very
simple freeware program that simply allows you to select a pixel anywhere on the screen and it will show
the color values of that pixel. Using a simple program like this helps us not get bogged down in other
details.

Running the app, we see the main screen:

What we want to do is add a nag message box before the main screen is displayed. In this case we will
use DLL injection.

The Legend Of Random
Programming and Reverse Engineering

Login

 Remember me

Recover password

Recent Posts

DLL Injection – A Simple Message Box

Using Resource Hacker to Change
Windows’ Behaviour

Another Great Site For PE Analysis

You Did Not Miss Tutorial #16C…

A site on Malware Analysis

Recent Comments

DLL Injection – A Simple Message Box «
The Legend Of Random on Tools

grimmoney on Tutorial #8: Frame Of
Reference

R4ndom on Tutorial #8: Frame Of
Reference

74n1 on Tutorial #8: Frame Of Reference

R4ndom on R4ndom’s Tutorial #17:
Working With Delphi Binaries

Archives

August 2012

July 2012

June 2012

May 2012

Categories
Beginner

Intermediate

Random's Ramblings

Reverse Engineering

Tools

Tutorials

Uncategorized

Meta

Home Tutorials Tools Contact Forum

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/intermediate
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/sample-page
http://www.oby.ro/rad_asm/
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/116.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
http://www.thelegendofrandom.com/forum/
Random
Rectangle

DLL Injection – A Simple Message Box « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1656[8/13/2012 10:53:02 AM]

DLLs

A DLL file is a collection of functions that, theoretically anyway, many applications need. Instead of having
the same function in every application, each application that needs a specific function can call the required
function inside of a DLL file, so that there only has to be one DLL file that every app uses. This cuts down
on code and memory use.

The name, Dynamic Link Library gives some of this away. It is a ‘library’, a collection of functions that
multiple apps use. These functions, available in the DLL, are ‘linked’ in with the application that needs
them. This is done ‘dynamically’ when the app is first loaded into memory. Perhaps a picture will help:

When a normal file is loaded, any DLL files that the application needs are loaded into the address space of
that application, so that the app can make calls to APIs inside that DLL. If another Windows program is
started that also needs a function from the same DLL, the DLL is also copied into the address space of this
new app. For example, Kernel32.dll is loaded with (just about) every application in Windows. Kernel32.dll
offers several methods that an application can call, for example ExitProcess that closes a window. Any
application that needs to be able to close itself will have Kernel32.dll loaded into its address space, and
will have the ExitProcess function available to call.

You may say to yourself, “If a DLL is loaded into every program’s memory space that needs it, it doesn’t
really cut down on memory as every program has a copy of it, so they are not sharing.” well, Windows has
a special way of dealing with DLLs that even though the applications think that they each have a copy of
the DLL all to themselves, they all really share the same code. Windows just makes it seem like they all

RSS Feed

Register

Log in

Entries RSS

Comments RSS

WordPress.org

Subscribe

Enter your email to subscribe to future
updates

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/Graph1.png
Random
Rectangle

DLL Injection – A Simple Message Box « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1656[8/13/2012 10:53:02 AM]

have a copy.

If you load up the target into Olly and look in the memory window, you will see all of the DLLs loaded into
the applications memory space:

We can see that this application uses several DLLs, with names like Guard32.dll, Oledlg.dll, and
Olepro32.dll.

If you then do a search for all intermodular calls, you will see all of the functions available from each of the
DLLs available to this application:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/29.png

DLL Injection – A Simple Message Box « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1656[8/13/2012 10:53:02 AM]

A DLL file is very similar to a normal executable file except all (or most) of it’s functions are set up to be
used by other applications instead of itself. When you create a DLL, you set up a certain file, called a DEF
file (for ‘definition’), that lists all of the function names that will be available for other applications to use.
When you then assemble and link this DLL, the compiler makes a table that can be used, with all of the
names and associated addresses of all of the functions. This is how the application finds these functions
(well, not exactly, but close enough).

Just like a ‘normal’ .exe file, a DLL has a “main” function, called DllEntry, that is executed when the DLL is
loaded into any program’s address space. The difference between a DLL and a normal binary is that the
main function of a DLL is called whenever the DLL is loaded into ANY applications memory space- you do
not need to actually run the DLL. This allows the DLL to set up any housekeeping it needs before making
itself available to the application. This is where DLL injection come is.

DLL Injection

DLL Injection is a way of injecting our own DLLs into an executable that wasn’t initially set up to use it.
You first create your own DLL, and then you add it to an application. You can do this programatically,
though we won’t do so in this tutorial, as that is quite detailed. Here, we will use a program called IIDKing
by Santmat. What it does is loads the target application and injects our DLL into it, saving the modified
target after. When the target app loads, before any code of the application is run, the Windows loader will
load our DLL along with any others the application needs. Anything we put inside the DLL main function
will be run automatically (as long as we tell the compiler that is should be run automatically-see below). We
can also modify the application to call our DLL whenever we want. Therefore, our DLL is injected into
another binary.

DLL Injection can be used for a lot of things; patching a binary, cracking an application, keygenning,
unpacking, virus writing.

Writing a DLL is not that hard. In fact, it is very much like writing a normal .exe file. Really, the only
difference is how you compile it. In this tutorial, we will add a message box when the application is first
started.

Let’s get started creating a DLL. Start up RadASM:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/39.png

DLL Injection – A Simple Message Box « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1656[8/13/2012 10:53:02 AM]

If you haven’t loaded MASM as a language yet, do so by selecting Options -> Programming Languages.
Select the three dots (“…”) to add a language and choose the masm.ini file:

Now, create a new project by selecting File -> New Project. Make sure MASM is selected in the Assembler
drop down, and choose “Dll Project”. Type in a name for your project and click next:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/117.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/210.png

DLL Injection – A Simple Message Box « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1656[8/13/2012 10:53:02 AM]

Select “None” for the template and click Next. Make sure “Def” is selected, along with “Asm”:

Click Next. Leave all the options the same in the “Make” window and click Finish. You should now have a
blank project:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/118.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/211.png

DLL Injection – A Simple Message Box « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1656[8/13/2012 10:53:02 AM]

Now open the MsgBox.asm file by double-clicking it in the project tree. Right now, there is nothing there,
so you will get a blank screen. Now, let’s add the DLL code in:

The code is also included in the download of this tutorial

We’ll go over this code piece by piece. First we declare some housekeeping stuff, telling the compiler
which CPU we’re running on and what kind of calling conventions to use:

.386

.model flat,stdcall
option casemap:none

Next, we define any files that this DLL needs, namely some Windows files that contain the code for the
MessageBox and other behind-the-scene functions:

include \masm32\include\windows.inc
include \masm32\include\user32.inc
include \masm32\include\kernel32.inc
includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib

Now we declare some strings that we will use, namely the title of the opening nag and the message of the
opening nag:

.data
AppName1 db “Windows format!”,0
LoadMsg db “Click OK to format your hard drive…”,0

Finally, we define the code for the DllEntry function. First is the actual definition:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/311.png

DLL Injection – A Simple Message Box « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1656[8/13/2012 10:53:02 AM]

.code
DllEntry proc hInstance:HINSTANCE, reason:DWORD, reserved1:DWORD

Next we have an IF statement for when we load the DLL. anything we put under the
“reason==DLL_PROCESS_ATTACH” statement will be run when the application laods in the DLL In this
case we just bring up a dialog box:

.if reason==DLL_PROCESS_ATTACH
invoke MessageBox,NULL,addr LoadMsg,addr AppName1,MB_OK
.endif

At the end, we return a true in the EAX register. This is a normal way for a DLL to return:

mov eax,TRUE
ret

And finally, we end the procedure definition:

DllEntry Endp
End DllEntry

The last thing we need to do is create an actual function that could theoretically be called. I say
‘theoretically’ because in our case it will not be called. The reason we’re creating it is you need at least one
callable function in the DLL in order to inject it. So we will create a dummy function. Insert it between the
last two lines, (the “DLLEntry endp” and “End DllEntry” lines):

TestProc proc
 invoke MessageBox,NULL,addr LoadMsg,addr AppName1,MB_OK
 ret
TestProc endp

This just invokes another message box, but we’ll never see it as it’s never called.

DLL Injection – A Simple Message Box « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1656[8/13/2012 10:53:02 AM]

Now let’s create the DEF file. Right click in the project window tree and choose “Add New” -> “File”. Save
the file as ‘MsgBox.Def’. Now let’s put in our definition:

LIBRARY MsgBox
EXPORTS TestProc

This tells the compiler that the name of our library will be “MsgBox” and the function that can be called in it
is called “TestProc”. That’s it. Now this DLL will make the TestProc function available to all applications
that use this DLL:

It’s time to compile our DLL. Hit F5 to assemble the project, creating the .obj file. If there are any errors,
they will appear at the bottom of the screen. Otherwise it will say the build was made. Now link it by
selecting “Make” -> “link”. If everything ran as expected, there will be a message saying the make was
done. You will also have a DLL file in the project folder:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/120.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/214.png

DLL Injection – A Simple Message Box « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1656[8/13/2012 10:53:02 AM]

We now have a legitimate DLL file .

Injecting Our DLL File

Now that we have our DLL, we will inject it into our target. Start up IIDKing. Click the “Pick a file” button
and select the target, in this case the ColorPicker.exe file:

Now we need to select our DLL. Click on the “Click to pick DLL” button and select our DLL file. That will
bring up the API selection box:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/58.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/67.png

DLL Injection – A Simple Message Box « The Legend Of Random

http://thelegendofrandom.com/blog/archives/1656[8/13/2012 10:53:02 AM]

No tags

Select our TestProc function and click the “Add them!” button. Then, on the main IIDKing screen, click
“Add them!”. You will get a message saying it was successfully added to the target:

Now for the coup d’grace…Start the target. You will see our first message box appear:

Clicking OK will bring up the main application’s window.

You have now injected a DLL into an executable…

-Till next time

R4ndom

[=-Docendo discimus-=]

Leave a Reply

http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/313.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/212.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/08/312.png
Random
Rectangle

	thelegendofrandom.com
	DLL Injection – A Simple Message Box « The Legend Of Random

