
Adding a Splash Dialog
by R4ndom on Jun.15, 2012, under Intermediate, Reverse Engineering, Tutorials

Introduction

In this tutorial I am going to show you how we can add a dialog box to the beginning of any app.
Personally, I use this trick to help out my fellow co-workers, either giving them subtle reminders (“You have
used deodorant today, right?”) or even helpful messages (“Are you sure you want to format your hard
drive?”). We will be using a special technique called a code cave. I will not be going into great detail about
code caves as I plan on covering them in my normal beginner’s guide to reverse engineering series, but
along with the files in the downloads for this tutorial I have included a great document on code caves and
how to use them.

The tools you will need for this tutorial are OllyDBG (any version), ODBGScript plugin (included in the
download), “Code Cave Finder” script for Olly (also included in download), CFF Explorer (or any PE editor-
you can download CFF from the tools page), and the target file called “ColorPicker”. A computer will also
come in handy.

The program I am going to use to demonstrate this technique is “Quick HTML Color Picker”, a freeware
program I have had for ages. It basically lets you click any color on the screen and see what it’s RGB and
hex values are (great help for web designers):

So let’s go ahead and load up the app in Olly…

The Legend Of Random
Programming and Reverse Engineering

Login

 Remember me

Recover password

Recent Posts

Adding a Splash Dialog

A new series of tutorials

Tutorial #6: Our First (True) Crack

Well, this just keeps getting better and
better…

The “Art Of Assemby”-ing uploads…

Recent Comments

Edno on Tutorials

ludkiller on A new series of tutorials

Adding a Splash Dialog « The Legend Of
Random on Tools

luc on Tutorial #5: Our First (Sort Of)
Crack

ludkiller on Tutorial #6: Our First (True)
Crack

Archives

June 2012

May 2012

Categories
Beginner

Intermediate

Reverse Engineering

Tools

Tutorials

Uncategorized

Meta

Register

Log in

Entries RSS

Comments RSS

Home Tutorials Tools Contact

http://thelegendofrandom.com/blog/archives/author/random
http://thelegendofrandom.com/blog/archives/category/intermediate
http://thelegendofrandom.com/blog/archives/category/reverse-engineering
http://thelegendofrandom.com/blog/archives/category/tutorials
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/0.png
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog
http://thelegendofrandom.com/blog/sample-page
http://thelegendofrandom.com/blog/tools
http://thelegendofrandom.com/blog/contact-2
Random
Rectangle

The first thing we want to do is find a code cave. But first, let me give you a quick rundown…

Code Caves

Normally, a program runs through code, calling various functions, jumping to various spots, following a flow
that the developer (hopefully) planned. Well, it is possible to change this flow in order to add, modify, or
remove certain functionality in an existing binary. Maybe you want to add a menu item that does
something when you select it, or add a button to a dialog box when clicked. Because the original intent of
the program was not to do these things, the code to perform them are obviously not in the binary- we must
add it. After deciding what code we wish to add to a program, the problem becomes “Where?” Where are
we going to put our custom code. And the next problem is “How do we tell the program to run our code
instead of the original code?”

For the first problem, the solution is a “code cave” (or sometimes “codecave”). What this means is that we
are going to find some space, either within the program’s memory space itself, or in a DLL that we will link
in at runtime, that we can store our custom code at. There are certain pluses and minuses to the two
different ways of doing it, either within the program itself or attaching a DLL to store the code, but in this
tutorial we will use the former as it is a little easier. What we are going to do is find a space in our program
that has nothing in it (no code, resources, variables etc.) where we can insert some of our code. This
space is usually located between sections. This is because sections are segmented by a certain amount
(meaning they must be a multiple of a certain amount) and if the code doesn’t end on exactly that amount,
there will be space at the end of the code before the next section starts:

RSS Feed

WordPress.org

Subscribe

Enter your email to subscribe to future
updates

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/113.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/Memory.png
Random
Rectangle

In this picture you can see that the segments are each in 512kb blocks. If the data in the last segment is
not exactly 512k, there will be some space before the next segment begins (purple arrows). Each of the
white spaces lists how many free bytes are there, prime locations to put a code cave. You can also have
caves span multiple sections so that the first performs some code then calls the second section and so on.

Sometimes, binaries have very little space between segments, so we have to do something a little more
involved. This may mean saving our code in a non-executable section (like a data section) and changing
that section’s attributes to be able to execute code. It may also mean that we need to create a brand new
section that will be tacked on to the binary. Fortunately for us, our program has lots of space at the end of
it’s code section where we can put our custom code (though I will be covering some of these other
challenges in other tutorials

Fortunately, there is a script that will help us find free memory in an executable section where we can put
our code cave. If you do not already have ODBGScript as a plugin, get it from the files in this download
and put it into the plugins folder. After you re-run Olly, you can select it and load in a script:

Now point ODBGScript to the Code Cave Finder script included in this tutorial and run it:

After it’s done it will pop up a message telling us how we can find any potential empty caves. Click OK
then cancel the script as it will keep running:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/214.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/38.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/43.png

So the script is telling us to look for user defined comments, so let’s do that:

And we see that the script has found a stretch of empty memory at address 42551B:

After double-clicking on that line, Olly takes us to that section and we can see that, in fact, there is a
section of empty code here:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/54.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/63.png

If you were to look in the Memory Window you would notice that this section of memory is in the .text
section, so it is already executable

Next comes the question of how we are going to construct our dialog splash screen. Fortunately for us,
this program already imports the MessageBoxA function which opens a dialog box. It would be OK if it
hadn’t, but we would have had to go through the work of loading in that function from the DLL, and that’s a
little more complicated (and saved for a later tutorial). Let’s do a search in our program to find the
MessageBoxA function. Right-click in the disassembly window and choose “Search for” -> “All
intermodular calls”. When the window first comes up it is sorted by address, so to make it a little easier to
find what we’re looking for, click on the “Destination” header to sort by the function’s name:

Now, one trick in this window is that if we start typing the name of the function, Olly will start sorting the list
for us. As you can see in the next picture, I typed the first four letters of MessageBoxA and the window
then went right to our desired function:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/73.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/83.png

So, now we know that our program calls MessageBoxA (once), probably on an about screen. Now the
reason we searched for this function is because we want to find out where the Windows loader loaded in
this function from the User32.dll file.Remember, when the file is first loaded, the loader checks to see
which DLLs our program needs and loads them into our program’s memory space. It then iterates through
the functions, looking for ones our program is going to call. When it finds the address of a particular
function, it copies it into a “jump table” so that every time our program needs to call this function, it will
simply call the line in the jump table that corresponds to that function. Otherwise, the loader would be
required to go through every call to that function in our program and change the address to what will finally
be the true address of the called function. (If you want to learn more about the jump table, please read my
reverse engineering tutorials:) What we need is the address that the loader has put into the jump table for
the MessageBoxA function. When we double-click on the MessageBoxA line in the intermodular calls
window, we are taken to where that function is called in our program:

You can see, at address 4200D0, that our color picker program calls the MessageBoxA function inside
User32.dll. Olly has kindly tried to help us by telling us it’s MessageBoxA as opposed to the actual address
that MessageBoxA resides at. In order to call this function ourself from our code cave, we need to get this
address. The way to do that is to click on the “CALL DWORD PTR DS:[<&USER32.
MessageBoxA>]” and hit the space bar. This will bring up the assembly window (as well as the true
address):

So we can see that the address we want to call is 426388. I would suggest copying and pasting this whole
line (CALL DWORD PTR DS:[426388]) into a text editor for later use OK, now let’s go back to our
code cave (remember, you can search for all user comments to find the empty space):

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/93.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/103.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/114.png

OK, now we want to start coding our own code. What this code is going to do is call a dialog box with a
custom caption and text. It will have an OK button as well. Then, after the user closes the dialog, the main
program will run like nothing ever happened.

For those that don’t have an API reference handy, the four parameters that are passed to MessageBoxA
are 1) a handle to the owner’s window, 2) the text to display, 3) the caption (title), and 4) the style of the
dialog. Of course, since we’re dealing in assembly language here, we will push the parameters in reverse
order So let’s start with the first line. Click a couple lines down from the beginning of the empty section
(I like to give myself a little padding for if I forget something I needed at the beginning) and hit the space
bar to open the assemble window. I started on line 42551E, so you probably should as well. I then types in
the first instruction, which in our case is a PUSH 0:

After you click the assemble button, the PUSH 0 instruction is added to the code, and Olly handily leaves
open the window, waiting for more instructions to assemble. The second instruction we want to insert is a
push of the address of the caption. We don’t know exactly where this will go, so I’m just gonna pick an
address down the screen a little. You can always come back and change the address if you run out of
space

I chose address 425537 as the address of the captions text.

Next, we must push the address of the text that will be displayed in the message box. I am just going to
pick a number down the page a little more and choose 425557. (We have his luxury as this program
happens to have a lot of free space. If we didn’t have as much, we would have to plan this better

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/122.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/133.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/143.png

The last parameter is another PUSH 0, as message boxes don’t need actual handles, they can just be set
to zero, so add that line in next. OK, now that we have pushed our last parameter, let’s insert the actual
call to MessageBoxA. Remember that line we copied earlier and saved in our text editor? That’s the one
to paste back in:

And after you click assemble, you can cancel that window and we now have most of our code. The next
thing we need to do is add in the strings for the caption and text. If you recall for the caption, earlier I
chose address 425537 as the address to store this, so let’s add it there. Right click no this line and choose
“Binary” -> “Edit”:

This will bring up our binary edit box. Now, I will type in the caption to my message box, in this case “Hey!”.
Make sure you delete the initial empty character and type in the ASCII field and not the other fields. At the
end, it should look like this:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/152.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/173.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/183.png

Now click OK and you should notice something strange; our text is not in there? Instead there’s some
crazy code that we never typed in! This is actually the binary code we typed in, but Olly is assuming for the
time being that we typed in assembly opcodes instead of data so he is showing it as assembly instructions.
Don’t worry, this will change shortly:

If you recall, the second paramter I pushed was the address of the actual text, and this address was
425557. Let’s do the same thing at this address (right-click -> Binary -> Edit). Type in whatever you want:

And after you click OK, you will notice that this comes up as strange code as well. Don’t worry about that
yet. Soon Olly will know the difference

Now we are confronted with our second initial question, “How do we tell the program to run our code
instead of the original code?” Well, there are a couple ways to do this. In this tutorial, we are going to
cheat a little and change the entry point (the point in the program that will start first) from the original entry
point to our new code cave. Then, at the end of our code, we are going to call the original entry point. This
basically makes our code run first, and then when it’s done, it will call the regular program. First we have
to find what this original entry point in the program was. To do this, double-click on the EIP register to tell

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/193.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/204.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/215.png

Olly to jump to where we are currently paused. Since we have not run the program yet, Olly will be paused
at the first line of code, which happens to be the original Entry Point for the color Picker Program:

As we can see, the OEP (original Entry Point) is 40B247. This means that had we not changed anything,
this will be the first line the CPU will run when this program is executed. What we need to do is to jump to
this OEP at the end of our code, so go back to our code and let’s enter a jump instruction to jump there:

Now Olly has still not figured out that our strings are strings and that our code is code, but he’s getting
smarter. In this next picture, the blue section is code and the red section is our ASCII string. Notice that
Olly has filled in our parameters for the MessageBoxA call by looking up our strings:

Now it is time to save our program. Highlight the entire section of the code cave where we have added
code, right click and choose “Save to executable”. This will open our patched code in a new window:

Now right-click in this new window and choose “Save file”. I chose the name colorPicker2.exe:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/224.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/234.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/244.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/254.png

Now as a side note, I wanted to show you what this new binary looked like with our cave in it, and I’m glad
I did because there was something I forgot to go over! Load the new program (colorPicker2.exe) into olly
and go to where we inserted our cave. You will see that Olly has displayed the strings correctly, but the
first instruction, the one that was supposed to be PUSH 0, has been changed! This is not a mistake. If
you recall, our address where our cave started was 42551E, but Olly is showing us address 42551D, so he
has gotten the instruction wrong. We don’t need to worry about this except to remember that our real entry
point in the cave is 42551E:

Changing the OEP

So now let’s tell the Windows loader to start at our code cave instead of the original entry point. Bring up
colorPicker2 in CFF Explorer (or any PE editor). You will see that the original address of the entry point
was B247, which, when added to the ImageBase, is 40b247. This was the address that we jumped to at
the end of our code section!

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/264.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/275.png

Now, what we want to do is change this entry point to point to our code instead of the original programs
starting code. Remember, our code starts at 42551E, so after subtracting the ImageBase of 400000, we
get 2551E. This is our new entry point:

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/284.png

Now, save the changes back to the executable (in CFF Explorer, choose “Save”). Now run our new color
picker:

We have done it!!! Now click OK and…

our program runs normally. Congratulations, we have added a dialog splash to a program. Now, go try to
be as helpful as I am to other people, perhaps offering advice (“That outfit makes you look fat.”) or perhaps

http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/293.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/302.png
http://thelegendofrandom.com/blog/wp-content/uploads/2012/06/0.png

Recent Posts

Adding a Splash Dialog

A new series of tutorials

Tutorial #6: Our First (True) Crack

Well, this just keeps getting better and better…

The “Art Of Assemby”-ing uploads…

Archives

June 2012

May 2012

Tags

adding functionality assembly language binary code

cave code caves cracking ebook exploting

binaries Guide Olly ollydbg olly tutorial plugins

reverse engineering sandbox Tools
tutorial

adding functionality, binary, code cave, code caves, exploting binaries, tutorial

just some kind words (“You would look soooo much better if you lost 40 pounds”

-Till next time

R4ndom

Leave a Reply

 Name

 Mail (will not be published)

 Website

RSS feed for this post (comments)

· TrackBack URI

Copyright © 1996-2010 The Legend Of Random. All rights reserved.

Jarrah theme by Templates Next | Powered by WordPress

Random
Rectangle

Random
Rectangle

