
 Win32Asm Tutorial

(C) Copyright by Mad Wizard (Thomas Bleeker)

Welcome to the win32asm tutorial. This is the online tutorial in htmlhelp format. The tutorial is always under
construction so make sure you've got the latest document.

You may spread this file freely, as long as it is used for non-profitable purposes. Commercial use is prohibited.

(C) Copyright 2000-2003 by Mad Wizard. Last (real) update:12-10-2000. Web:http://www.madwizard.org

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 1 / 53

 Win32Asm Tutorial

Contents

Note that these tutorials are continuously under construction.

0 Introduction
1 Assembly language
2 Getting started
3 Basics of asm
4 Memory
5 Opcodes
6 File structure
7 Conditional jumps
8 Something about numbers
9 More opcodes
10 The advantages of masm
11 Basics of asm in win
12 First Program
13 Windows in windows
14 Under construction

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 2 / 53

 Win32Asm Tutorial

prev Introduction to assembler next

This is my win32asm tutorial. It is always under construction, but I'm working on it. With the next
and prev links in the navigation above, you can go the next and previous page.

Introduction

First a short introduction about this tutorial. Win32asm isn't a very popular programming language,
and there are only a few (good) tutorials. Also, most tutorials focus on the win32 part of the
programming (i.e. the win API, use of standard windows programming techniques and so on), not on
the assembler programming itself, using opcodes, registers etc. Although you can find these things in
other tutorials, these tutorials often explain DOS programming. This sure helps you to learn the
assembly language, but with programming in windows, you don't need to know about DOS
interrupts and port in/out functions. In windows, there's the windows API that supplies standard
functions you can use in your program, but more on this later. The goal of this tutorial is to explain
win32 programming in assembler as well as assembly language itself.

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 3 / 53

 Win32Asm Tutorial

prev 1 - Assembly language next

1.0 - Assembly Language

Assembly language is created as replacement for the raw binary code that the processor
understands. A long time ago, when there were no high-level programming languages yet, programs
were created in assembly. Assembly codes directly represent instructions the processor can execute.
For example:

add eax, edx

This instruction, add, adds two values together. Eax and edx are called registers, they can contain
values and are stored internally in the processor. This code is converted to 66 03 C2 (hexcodes). The
processor reads these codes, and executes the instruction it represents. High level languages like C
convert their own language to assembly, and the assembler converts it to binary codes:

C code >> Compiler > > Assembly >>Assembler>> Raw output (hex)
a = a + b; add eax, edx 66 03 C2

(Note that this assembly code is simplified, output depends on the context of the C code)

1.1 - Why?

Why would you use asm instead of C or something if it's harder to program in asm??. Assembler
programs are small & fast. In very high-level programming languages like artificial intelligence, it
gets harder for the compiler to produce output code. The compiler has to figure out the fastest (or
smallest) method to produce assembly code, and although compilers still get better, programming
the code yourself (with option code optimalization) will produce smaller and faster code. But of
course this is much harder than high-level languages.
There's another difference with some high-level languages, that use runtime dll's for their functions.
For example, Visual C++ has msvcrt.dll which contains standard C functions. This works OK most of
the time, but sometimes causes problems with dll versions (dll hell) and the user always needs to
have these DLL's installed. For visual C this is not really a problem, they are installed with the
windows-installation. Visual Basic even doesn't convert it's own language to assembler (although
version 5 and above do this a little, but not fully), it depends highly on msvbvm50.dll, the Visual
basic virtual machine. The exe that is created by VB exists solely of simple pieces of code and many
calls to this dll. This is why VB is slow. Assembler is the fastest language there is. It only uses the
system DLL's kernel32.dll, user32.dll, etc.

Another misunderstanding is that many people think of assembly as an impossible language to
program in. Sure, it is difficult, but not impossible. Creating big projects in assembly indeed is hard
in assembler, I only use it for small programs, or DLL's that can be imported by other languages for
parts of the code that need speed. Also, there's a big difference between DOS & windows programs.
DOS programs use interrupts as 'functions'. Like int 10 for video, int 13 for file access etc. In win,
there's the API, Application Programming Interface. This interface consists of functions you can use
in your program. In dos programs, interrupts have an interrupt number and a function number. In
win, API functions just have names (e.g. MessageBox, CreateWindowEx). You can import libraries
(DLL's) and use the functions inside them. This makes it a lot easier to program in asm. You will
learn more about this in the next tutorials.

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 4 / 53

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 5 / 53

 Win32Asm Tutorial

prev 2 - Getting started next

2.0 - Getting started

Enough introduction for now, let's get started. To program in assembly, you will need some tools.
Below, you can see which tools I will use in this tutorial. I advise you to install the same tools, so you
can follow the tutorial and try the examples. I've also given some alternatives, for most tools you can
choose the alternative for this tutorial, but be warned that there is a big difference between the
assemblers (masm, tasm and nasm). In this tutorial masm will be used, because of it's useful
functions like invoke, which makes the programming much easier. Of course your free to go and use
the assembler you prefer, but it will be harder to follow this tutor and you will have to convert the
examples to make it work with your assembler.

Assembler
Used: Masm (from the win32asm package)
Location: Win32asm.cjb.net
Description: An assembler converts the assembly source code (opcodes) to the raw
output (object file) for the processor.
About: Masm, macro assembler, is an assembler with a few useful features, like
'invoke', which simplifies calls to API functions and data type checking, but you will
understand this later in this tutorial. If you have read the text above you will know
that for this tutorials it's advised to use masm.
Alternatives:
Tasm, nasm [dl]

Linker
Used: Microsoft Incremental Linker (link.exe)
Location: Win32asm.cjb.net (in the win32asm package)
Description: A linker 'links' all object files and libraries (for DLL import) together to
produce the final executable.
Description: I will use link.exe which is available in the win32asm package at
Iczelion's page, but most linkers can be used.
Alternatives:
Tasm linker

Resource Editor
Used: Borland Resource Workshop
Location: Not free
Description: A resource editor is used for creating resources (images, dialogs,
bitmaps, menu's).
About: Most editors will be okay my personal favor goes out to resource workshop
but you can use what you want. Note: resource files created with resource
workshop sometimes gives problems with resource compiling, if you want to use
this editor, you should download tasm as well, which contains brc32.exe for
compiling borland-style resources.
Alternatives:
Symantec Resource Editor, Resource Builder, many others

Text Editor
Used: Ultraedit
Location: www.ultraedit.com
Description: Does a text editor need a description?

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 6 / 53

Description: Does a text editor need a description?
About: The choice of a text editor is very personal, I like ultraedit very much. You
can download my wordfile for ultraedit, so you will have syntax highlighting for
assembler code. But at least choose a text editor that supports syntax highlighting
(keywords will automatically be colored), this is VERY useful and it makes your
code a lot easier to read and write. Ultraedit also has a function list to go to a specific
function in your code quick. [download wordfile here]
Alternatives:
One of the millions of text editors

References
Used: Win32 Programmer's reference
Location: (search the web)
Description: You will need a few references with API functions. The most important
is "win32 programmer's reference" (win32.hlp). This is a big file, about 24 mb (some
versions are 12 but are not complete). In this file, all the functions of the system dll's
(kernel, user, gdi, shell etc.) are described. You will at least need this file, other
references (sock2.hlp, mmedia.hlp, ole.hlp etc.) are also useful but not necessary.
Alternatives:
N/A

2.1 - Installing the tools

Now you've got these tools, install them somewhere. Here are a few important notes:

Install the masm package on the same drive you plan writing your assembly source files. This
ensures the paths to the includes and libraries are correct
add the bin directory of masm (and tasm) to your path in autoexec.bat and reboot.
If you've got ultraedit, use the wordfile you can download above and enable the function-
listview.

2.2 - Folder for your source

Create a win32 folder (or with any name you like) somewhere (on the same drive as masm), and
create a sub-folder for every project you make.

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 7 / 53

 Win32Asm Tutorial

prev 3 - Basics of asm next

3.0 - Basics of asm

This tutorials will teach you the basics of assembly language

3.1 - Opcodes

Assembler programs are created with opcodes. An opcode is an instruction the processor can
understand. For example:

ADD

The add instructions adds two numbers together. Most opcodes have operands:

ADD eax, edx

ADD has 2 operands. In the case of an addition, a source and a destination. It adds the source value
to the destination value and then stores the result in the destination. Operands can be of different
types: registers, memory locations, immediate values (see below).

3.2 - Registers

There are a few sizes of registers: 8 bit, 16 bit, 32 bit (and some more on a MMX processor). In 16-bit
programs, you can only use 16-bit registers and 8 bit registers. In 32-bit programs you can also use
32-bit registers.
Some registers are part of other registers; for example, if EAX holds the value EA7823BBh, here's
what the other registers contain.

EAX EA 78 23 BB
AX EA 78 23 BB
AH EA 78 23 BB
AL EA 78 23 BB

ax, ah, al are part of eax. Eax is a 32-bit register (available only on 386+), ax contains the lower 16 bits
(2 bytes) of eax, ah contains the high byte of ax, and al contains the low byte of ax. So ax is 16 bit, al
and ah are 8 bit. So, in the example above, these are the values of the registers:

eax = EA7823BB (32-bit)
ax = 23BB (16-bit)
ah = 23 (8-bit)
al = BB (8-bit)

Example of the use of registers (don't care about the opcodes, just look at the registers and
description):

mov eax,
12345678h

mov loads a value into a register (note: 12345678h is a hex value because
of the 'h' suffix)

mov cl, ah move the high byte of ax (67h) into cl
sub cl, 10 substract 10 (dec.) from the value in cl
mov al, cl and store it in the lowest byte of eax.

Let's examine the code above:
The mov instruction can move a value from a register, memory or an immediate value to another
register. In the example above, eax contains 12345678h. Then the value of ah (the 3rd byte from the
left in eax) is copied to cl (the lowest byte of the ecx register). Then, 10 is substracted from cl and it is
moved back to al (the lowest byte of eax).

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 8 / 53

There are different types of registers:

General Purpose

These 32-bit (and 16/8 for their components) registers can be used for anything:

eax (ax/ah/al) Accumulator
ebx (bx/bh/bl) Base
ecx (cx/ch/cl) Counter
edx (dx/dh/dl) Data

Although they have names, you can use them for anything.

Segment Registers

Segment registers define the segment of memory that is used. You'll probably won't need them with
win32asm, because windows has a flat memory system. In dos, memory is divided into segments of
64kb, so if you want to define a memory address, you specify a segment, and an offset (like
0172:0500 (segment:offset)). In windows, segments have sizes of 4gig, so you won't need segments in
win. Segments are always 16-bit registers.

CS code segment
DS data segment
SS stack segment
ES extra segment
FS (only 286+) general purpose segment
GS (only 386+) general purpose segment

Pointer Registers

Actually, you can use pointer registers as general purpose registers (except for eip), as long as you
preserve their original values. Pointer registers are called pointer registers because their often used
for storing memory addresses. Some opcodes also (movb,scasb,etc.) use them.

esi (si) Source index
edi (di) Destination index
eip (ip) Instruction pointer

EIP (or IP in 16-bit programs) contains a pointer to the instruction the processor is about to execute.
So you can't use eip as general purpose registers.

Stack Registers

There are 2 stack registers: esp & ebp. Esp holds the current stack position in memory (more about
this in one of the next tutorials). Ebp is used in functions as pointer to the local variables.

esp (sp) Stack pointer
ebp (bp) Base pointer

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 9 / 53

 Win32Asm Tutorial

prev 4 - Memory next

4.0 - Memory

This section will explain how memory is handled in windows.

4.1 - DOS & win 3.xx

In 16-bit programs like for DOS and windows 3, memory was divided in segments. These segments
have sizes of 64kb. To access memory, a segment pointer and an offset pointer are needed. The
segment pointer indicates which segment (section of 64kb) to use, the offset pointer indicates the
place in the segment itself. Look at the following picture:

MEMORY
SEGMENT 1

(64kb)
SEGMENT 2

(64kb)
SEGMENT 3

(64kb)
SEGMENT

4(64kb) and so on

Note that the following explanation is for 16-bit programs, more on 32-bit later (but don't skip this
part, it is important to understand 32-bits).
The table above is the total memory, divided in segments of 64kb. There's a maximum of 65536
segments. Now take one of the segments:

SEGMENT 1(64kb)
Offset 1 Offset 2 Offset 3 Offset 4 Offset 5 and so on

To point to a location in a segment, offsets are used. An offset is a location inside the segment.
There's a maximum of 65536 offsets per segment. The notation of an address in memory is:

SEGMENT:OFFSET

For example:

0030:4012 (all hex numbers)

This means: segment 30, offset 4012. To see what is at that address, you first go to segment 30, and
then to offset 4012 in that segment. In the previous tutorials, you've learned about segment and
pointer registers. For example, the segment registers are:

CS - Code segment
DS - Data Segment
SS - Stack Segment
ES - Extra Segment
FS - General Purpose
GS - General Purpose

The names explain their function: code segment (CS) contains the number of the section where the
current code that is executed is. Data segment for the current segment to get data from. Stack
indicates the stack segment (more on the stack later), ES, FS, GS are general purpose registers and
can be used for any segment (not in win32 though).

Pointer registers most of the time hold an offset, but general purpose registers (ax, bx, cx, dx etc.) can
also be used for this. IP indicates the offset (in the CS (code segment)) of the instruction that is
currently executed. SP holds the offset (in the SS (stack segment)) of the current stack position.

4.2 - 32-bit Windows

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 10 / 53

You have probably noticed that all this about segments really isn't fun. In 16-bit programming,
segments are essential. Fortunately, this problem is solved in 32-bit windows (95 and above). You
still have segments, but don't care about them because they aren't 64kb, but 4 GIG. Windows will
probably even crash if you try to change one of the segment registers. This is called the flat memory
model. There are only offsets, and they now are 32-bit, so in a range from 0 to 4,294,967,295. Every
location in memory is indicated only by an offset. This is really one of the best advantages of 32-bit
over 16-bit. So you can forget the segment registers now and focus on the other registers.

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 11 / 53

 Win32Asm Tutorial

prev 5- Opcodes next

5.0 - Opcodes

Opcodes are the instructions for the processor. Opcodes are actually "readable text"-versions of the
raw hex codes. Because of this, assembler is the lowest level of programming languages, everything
in asm is directly converted to hexcodes. In other words, you don't have a compiler-fase that converts
a high-level language to low-level, the assembler only converts assembler codes to raw data.

This tutor will discuss a few opcodes that have to do with calculation, bitwise operations, etc. The
other opcodes, jump instructions, compare-opcodes etc, will be discussed later.

5.1 - A few basic calulation opcodes

MOV

This instruction is used to move (or actually copy) a value from one place to another. This 'place' can
be a register, a memory location or an immediate value (only as source value of course). The syntax
of the mov instruction is:

mov destination, source

You can move a value from one register to another (note that the instruction copies the value, in spite
of its name 'move', to the destination).

mov edx, ecx

The instruction above copies the contents of ecx to edx. The size of source and destination should be
the same, this instruction for example is NOT valid:

mov al, ecx ; NOT VALID

This opcode tries to put a DWORD (32-bit) value into a byte (8-bit). This can't be done by the mov
instruction (there are other instructions to do this). But these instructions are allowed because source
and destination don't differ in size.

mov al, bl
mov cl, dl
mov cx, dx
mov ecx, ebx

Memory locations are indicated with an offset (in win32, for more info see the previous page). You
can also get a value from a certain memory location and put it in a register. Take the following table
as example:

offset 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42
data 0D 0A 50 32 44 57 25 7A 5E 72 EF 7D FF AD C7

(each block represents a byte)

The offset value is indicated as a byte here, but it is a 32-bit value. Take for example 3A (which isn't a
common value for an offset, but otherwise the table won't fit...), this also is a 32-bit value: 0000003Ah.
Just to save space, some unusual and low offsets are used. All values are hexcodes.

Look at offset 3A in the tabel above. The data at that offset is 25, 7A, 5E, 72, EF, etc. To put the value
at offset 3A in, for example, a register you use the mov instruction, too:

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 12 / 53

mov eax, dword ptr [0000003Ah]

(the h-suffix means hex value)
The instruction mov eax, dword ptr [0000003Ah] means: put the value with the size of a DWORD
(32-bit) at memory location 3Ah in register eax. After executing this instruction, eax contains the
value 725E7A25h. Maybe you have noticed that this is the inverse of what's in the memory: 25 7A 5E
72. This is because values are stored in memory using the little endian format. This means that the
rightmost byte is stored in the most significant byte: The byte order is reversed. I think some
examples will make this clear:

the dword (32-bit) value 10203040 hex is stored in memory as: 40, 30, 20,
10 (each value consumes one byte (8-bit))
the word (16-bit) value 4050 hex is stored in memory as 50, 40

Back to the example above. You can do this with other sizes too:

mov cl, byte ptr [34h] ; cl will get the value 0Dh (see table above)
mov dx, word ptr [3Eh] ; dx will get the value 7DEFh (see table above,
remember the reversed byte order)

The size sometimes isn't necessary:

mov eax, [00403045h]

because eax is a 32-bit register, the assembler assumes (and this is the only way to do it, too) it
should take a 32-bit value from memory location 403045hex.

Immediate numbers are also allowed:

mov edx, 5006

This will just make the register edx contain the value 5006. The brackets, [and], are used to get a
value from the memory location between the brackets, without brackets it is just a value. A register
as memory location is allowed to (it should be a 32-bit register in 32-bit programs):

mov eax, 403045h ; make eax have the value 403045 hex.
mov cx, [eax] ; put the word size value at the memory location EAX
(403045) into register CX.

In mov cx, [eax], the processor first looks what value (=memory location) eax holds, then what value
is at that location in memory, and put this word (16 bits because the destination, cx, is a 16-bit
register) into CX.

ADD, SUB, MUL, DIV

Many opcodes do calculations. You can guess most of their names: add (addition), sub (substraction),
mul (multiply), div (divide) etc.

The add-opcode has the following syntax:

add destination, source

The calculation performed is destination = destination + source. The following forms are allowed:

Destination Source Example
Register Register add ecx, edx
Register Memory add ecx, dword ptr [104h] / add ecx, [edx]

Register Immediate
value

add eax, 102

Memory Immediate
value

add dword ptr [401231h], 80

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 13 / 53

Memory Register add dword ptr [401231h], edx

This instruction is very simple. It just takes the source value, adds the destination value to it and then
puts the result in the destination. Other mathematical instructions are:

sub destination, source (destination = destination - source)
mul destination, source (destination = destiantion * source)
div source (eax = eax / source, edx = remainer)

Substraction works the same as add, multiplication is just dest = dest * source. Division is a little
different. Because registers are integer values (i.e. round numbers, not floating point numbers) , the
result of a division is split in a quotient and a remainder. For example:

28 /6 --> quotient = 4, remainder = 4
30 /9 --> quotient = 3, remainder = 3
97 / 10 --> quotient = 9, remainder = 7
18 /6 --> quotient = 3, remainder = 0

Now, depending on the size of the source, the quotient is stored in (a part of) eax, the remainder in (a
part of) edx:

Source size Division Quotient stored in ... Remainder Stored
in...

BYTE (8-bits) ax / source AL AH
WORD (16-bits) dx:ax* / source AX DX
DWORD (32-bits) edx:eax* / source EAX EDX

* = For example: if dx = 2030h, and ax = 0040h, dx: ax = 20300040h. dx:ax is a dword value where dx
represents the higher word and ax the lower. Edx:eax is a quadword value (64-bits) where the higher
dword is edx and the lower eax.

The source of the div-opcode can be:

an 8-bit register (al, ah, cl,...)
a 16-bit register (ax, dx, ...)
a 32-bit register (eax, edx, ecx...)
an 8-bit memory value (byte ptr [xxxx])
a 16-bit memory value (word ptr [xxxx])
a 32-bit memory value (dword ptr [xxxx])

The source can not be an immediate value because then the processor cannot determine the size of
the source operand.

BITWISE OPERATIONS

These instructions all take a destination and a source, exept the 'NOT' instruction. Each bit in the
destination is compared to the same bit in the source, and depending on the instruction, a 0 or a 1 is
placed in the destination bit:

Instruction AND OR XOR NOT
Source Bit 0 0 1 1 0 0 1 1 0 0 1 1 0 1
Destination
Bit 0 1 0 1 0 1 0 1 0 1 0 1 X X

Output Bit 0 0 0 1 0 1 1 1 0 1 1 0 1 0

AND sets the output bit to 1 if both the source and destination bit is 1.
OR sets the output bit if either the source or destination bit is 1
XOR sets the output bit if the source bit is different from the destination bit.
NOT inverts the source bit.

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 14 / 53

An example:

mov ax, 3406
mov dx, 13EAh
xor ax, dx

ax = 3406 (decimal), which is 0000110101001110 in binary.
dx = 13EA (hex), which is 0001001111101010 in binary.
Perform the XOR operation on these bits:

Source 0001001111101010 (dx)
Destination 0000110101001110 (ax)
Output 0001111010100101 (new dx)

The new dx is 0001111010100101 (7845 decimal, 1EA5 in hex) after the instruction.

Another example:

mov ecx, FFFF0000h
not ecx

FFFF0000 is in binary 11111111111111110000000000000000 (16 1's, 16 0's)
If you take the inverse of every bit, you get:
00000000000000001111111111111111 (16 0's, 16 1's), which is 0000FFFF in hex.
So ecx is after the NOT operation 0000FFFFh.

IN/DECREMENTS

There are 2 very simple instructions, DEC and INC. These instructions increase or decrease a
memory location or register with one. Simply put:

inc reg -> reg = reg + 1
dec reg -> reg = reg - 1
inc dword ptr [103405] -> value at [103405] will increase by one.
dec dword ptr [103405] -> value at [103405] will decrease by one.

NOP

This instruction does absolutely nothing. This instruction just occupies space and time. It is used for
filling purposes and patching codes.

Bit Rotation and Shifting

Note: Most of the examples below use 8-bit numbers, but this is just to make the picture clear.

Shifting functions

SHL destination, count
SHR destination, count

SHL and SHR shift a count number of bits in a register/memlocation left or right.

Example:

; al = 01011011 (binary) here
shr al, 3

This means: shift all the bits of the al register 3 places to the right. So al will become 00001011. The
bits on the left are filled up with zeroes and the bits on the right are shifted out. The last bit that is
shifted out is saved in the carry-flag. The carry-bit is a bit in the processor's Flags register. This is not a

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 15 / 53

register like eax or ecx that you can directly access (although there are opcodes to do this), but it's
contents depend on the result of the instruction. This will be explained later, the only thing you'll
have to remember now is that the carry is a bit in the flag register and that it can be on or off. This bit
equals the last bit shifted out.

shl is the same as shr, but shifts to the left.

; bl = 11100101 (binary) here
shl bl, 2

bl is 10010100 (binary) after the instruction. The last two bits are filled up with zeroes, the carry bit is
1, because the bit that was last shifted out is a 1.

Then there are two other opcodes:

SAL destination, count (Shift Arithmetic Left)
SAR destination, count (Shift Arithmetic Right)

SAL is the same as SHL, but SAR is not quite the same as SHR. SAR does not shift in zeroes but
copies the MSB (most significant bit). Example:

al = 10100110
sar al, 3
al = 11110100
sar al, 2
al = 11111101

bl = 00100110
sar bl, 3
bl = 00000010

Rotation functions

rol destination, count ; rotate left
ror destination, count ; rotate right
rcl destination, count ; rotate through carry left
rcr destination, count ; rotate through carry right

Rotation looks like shifting, with the difference that the bits that are shifted out are shifted in again on
the other side:

Example: ror (rotate right)

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Before 1 0 0 1 1 0 1 1
Rotate, count=
3 1 0 0 1 1 0 1 1 (Shift out)

Result 1 1 0 1 0 0 1 1

As you can see in the figure above, the bits are rotated, i.e. every bit that is pushed out is shift in
again on the other side. Like shifting, the carry bit holds the last bit that's shifted out. RCL and RCR
are actually the same as ROL and RCR. Their names suggest that they use the carry bit to indicate the
last shift-out bit, which is true, but as ROL and ROR do the same, they do not differ from them.

Exchange

The XCHG instruction is also quite simple. It can exchange two registers or a register and a memory
location:

eax = 237h

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 16 / 53

eax = 237h
ecx = 978h
xchg eax, ecx
eax = 978h
ecx = 237h

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 17 / 53

 Win32Asm Tutorial

prev 6- File structure next

6.0 - File Structure

Assembly source files are divided in sections. The sections are code, data, uninitialized data,
constants, resource and relocations. Resource sections are created by a resource file, more about this
later. The relocation section is not important to us (it contains information to make it possible for the
PE-loader to load the program at a different location in memory). Important sections are code, data,
uninitialized data and constants. Code sections contain, well you've guessed it, code. Data contains
data, and has read and write access. The whole data section is included in the exe file and can be
initialized with data.
Unitialized data has no contents at startup, and isn't even included in the exe file itself, it is just a part
of memory reserved by windows. This section has read and write access. Constants is the same as
the data section, but with readonly access. Although this section can be used for constants, it is easier
and faster to just declare constants in include files, and then use it as immediate values.

6.1 Section indicators

In your source files (*.asm), you define sections with the section statements:

.code ; code section starts here

.data ; data section starts here

.data? ; unitialized data starts here

.const ; constants section starts here

Executable files (*.exe, *.dll and more) are (in win32) in the portable executable-format (PE). I won't
discuss this in details but a few things are important. The sections are defined in the PE-header with
a few characteristics:
Section name, RVA, offset, raw size, virtual size and flags. RVA (relative virtual address) is the
relative location in memory where that section will be loaded. Relative here means that it is relative to
the base address, the address in memory where the program is loaded. This address is also in the PE-
header but can be changed by the PE-loader (using the relocation-section). Offset is the raw offset in
the exe file itself where the initial data is. Virtual size is the size it will become in memory. Flags are
the flags for read-access/write-access/executable etc.

6.2 Example program

Here's an example program:

.data
Number1 dd 12033h
Number2 dw 100h,200h,300h,400h
Number3 db "blabla",0

.data?
Value dd ?

.code
mov eax, Number1
mov ecx, offset Number2
add ax, word ptr [ecx+4]
mov Value, eax

This program will not assemble well, but that doesn't matter.
In your assembly program, everything you put in a section will go to the exe file and, when the
program is loaded in memory, at a certain memory location. In the data section above, there are 3
labels: Number1, Number2, Number3. These labels will hold the offset of the location they are in the

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 18 / 53

program so you can use them to indicate a place in your program.
DD directly puts a dword at that place, DW a word and DB a byte. With db, you can also use a
string, because a string is actually a list of byte values. In the example, the data section would
become this in memory:
33,20,01,00,00,01,00,02,00,03,00,04,62,6c,61,62,6c,61,00 (all hex numbers)
(every value is a byte)

I've colored some of the numbers. Number1 points to the memory location where the byte 33 is,
Number 2 points to the location of the red 00, Number3 to the green 62. Now if you use this in your
program:

mov ecx, Number1

It actually means:

mov ecx, dword ptr [location where the dword 12033h is in memory]

But this:

mov ecx, offset Number1

means:

mov ecx, location where dword 12033h is in memory

In the first example, ecx will get the value that is at the memory location of Number1. In the second,
ecx will become the memory location (offset) itself . These two examples below have the same effect:

(1)
mov ecx, Number1

(2)
mov ecx, offset Number1
mov ecx, dword ptr [ecx] (or mov ecx, [ecx])

Now let's go back to the example:

.data
Number1 dd 12033h
Number2 dw 100h,200h,300h,400h
Number3 db "blabla",0

.data?
Value dd ?

.code
mov eax, Number1
mov ecx, offset Number2
add ax, word ptr [ecx+4]
mov Value, eax

The label Value can be used just like Number1, Number2 and Number3, but it will contain 0 at
startup because it is in the unitialized data section. The advantage of this is, that everything you
define in .data? will not be in the executable, only in memory.

.data?
ManyBytes1 db 5000 dup (?)

.data
ManyBytes2 db 5000 dup (0)

(5000 dup means: 5000 duplicates. Value db 4,4,4,4,4,4,4 is the same as Value db 7 dup (4).)

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 19 / 53

ManyBytes1 will not be in the file itself, just 5000 reserved bytes in memory. But ManyBytes2 will be
in the executable, making the file 5000 bytes bigger. As your file then will contain 5000 zeroes, this is
not very useful.

The code section will just be assembled (converted to raw codes) and placed in the executable (and in
memory when it's loaded of course).

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 20 / 53

 Win32Asm Tutorial

prev 7- Conditional jumps next

7.0 - Conditional Jumps

In the code section, you can also use labels like this:

.code

mov eax, edx
sub eax, ecx
cmp eax, 2
jz loc1
xor eax, eax
jmp loc2
loc1:
xor eax, eax
inc eax
loc2:

(xor eax, eax means: eax = 0.)

Let's examine the code:
mov eax, edx : put edx in eax
sub eax, ecx : substract ecx from eax
cmp eax, 2

This is a new instruction: cmp. Cmp stands for compare. It can compare two values (reg, mem, imm)
and sets the Z-flag (zeroflag) if they are equal. The zero-flag is, like the carry, also a bit in the internal
flag register.

jz loc1

This one is also new. It is a conditional jump. Jz = jump if zero. I.e. jump if the zero flag is set. Loc1
is a label for the offset in memory where the instructions 'xor eax, eax | inc eax' begin. So jz
loc1 = jump to the instruction at loc1 if the zero flag is set.

cmp eax, 2 : set zero flag if eax=2
jz loc1 : jump if zero flag is set

=

Jump to the instructions at loc1 if eax is equal to 2

Then there's a jmp loc2. This also is a jump, but an unconditional jump: it always jumps. What the
code above exactly does is:

if ((edx-ecx)==2)
{
eax = 1;
}
else
{
eax = 0;
}

or the BASIC version:

IF (edx-ecx)=2 THEN
EAX = 1
ELSE

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 21 / 53

EAX = 0
END IF

7.1 - Flag register

The flag register has a set of flags which are set or unset depending on calculations or other events. I
won't discuss all of them, only a few are important:

ZF (Zero flag)
This flag is set when the result of a calculation is zero (compare is actually a substraction without
saving the results, but setting the flags only).
SF (Sign flag)
If set, the resulting number of a calculation is negative.
CF (Carry flag)
The carry flag contains the left-most bit after calculations.
OF (Overflow flag)
Indicates an overflow of a calculation, i.e. the result does not fit in the destination.

There are more flags (Parity, Auxiliary, Trap, Interrupt, Direction, IOPL, Nested Task, Resume, &
Virtual Mode) but as we won't use them I don't explain them.

7.2 - The jump serie

There is a whole serie of conditional jumps, and they all jump depending on the state of the flag. But
as most jumps have clear names, you don't even have to know which flag has to be set. "Jump if
greater or equal" (jge) for example is the same as "Sign flag = Overflow flag", and
"Jump if zero" is the same as "Jump if Zero flag = 1".

In the table below, 'meaning' indicates what the outcome of a calculation should be to jump. "Jump if
above" means:
cmp x, y
jump if x is above y

Opcode Meaning Condition
JA Jump if above CF=0 & ZF=0
JAE Jump if above or equal CF=0
JB Jump if below CF=1
JBE Jump if below or equal CF=1 or ZF=1
JC Jump if carry CF=1
JCXZ Jump if CX=0 register CX=0
JE (is the same as
JZ) Jump if equal ZF=1

JG Jump if greater (signed) ZF=0 & SF=OF
JGE Jump if greater or equal (signed) SF=OF
JL Jump if less (signed) SF != OF
JLE Jump if less or equal (signed) ZF=1 or SF!=OF
JMP Unconditional Jump -
JNA Jump if not above CF=1 or ZF=1
JNAE Jump if not above or equal CF=1
JNB Jump if not below CF=0
JNBE Jump if not below or equal CF=1 & ZF=0
JNC Jump if not carry CF=0
JNE Jump if not equal ZF=0
JNG Jump if not greater (signed) ZF=1 or SF!=OF

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 22 / 53

JNGE Jump if not greater or equal (signed) SF!=OF
JNL Jump if not less (signed) SF=OF
JNLE Jump if not less or equal (signed) ZF=0 & SF=OF
JNO Jump if not overflow (signed) OF=0
JNP Jump if no parity PF=0
JNS Jump if not signed (signed) SF=0
JNZ Jump if not zero ZF=0
JO Jump if overflow (signed) OF=1
JP Jump if parity PF=1
JPE Jump if parity even PF=1
JPO Jump if paity odd PF=0
JS Jump if signed (signed) SF=1
JZ Jump if zero ZF=1

All jump instructions take one operand: an offset to jump to.

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 23 / 53

 Win32Asm Tutorial

prev 8- Something about numbers next

8.0 - Something about numbers

Using integer or floating point numbers in most programming languages just depends on the
declaration of variables. In assembler these are completly different. Floating point calculations are
done with a special opcode-set, by a FPU co-processor (floating point unit). Floating point
instructions will be discussed later. First something about integers. In C language, there are signed
and unsigned numbers. Signed just means that the number has a sign (+ or -), unsigned is always
positive. Look at the table below to see the difference (again, this is a byte-example, it works the
same for other sizes):

Value 00 01 02 03 ... 7F 80 ... FC FD FE FF
Unsigned
meaning 00 01 02 03 ... 7F 80 ... FC FD FE FF

Signed meaning 00 01 02 03 ... 7F -80 ... -04 -03 -02 -01

So with signed numbers, a byte is split in two ranges: 0 - 7F for positive values, 80 - FF for negative
values. For dword values, it works the same: 0 - 7FFFFFFFh positive, 80000000 - FFFFFFFFh negative.
As you might have noticed, negative numbers have the most significant bit set, because they are
greater that 80000000h. This bit is called the sign bit.

8.1 - Signed or unsigned?

Neither you or the processor can see if a value is singed or unsigned. The good news is that for
addition and substraction, it doesn't matter if the number is signed or unsigned:

Calculate: -4 + 9
FFFFFFFC + 00000009 = 00000005. (which is correct)

Calculate 5 - (-9)
00000005 - FFFFFFF7 = 0000000E (which is correct, too (5 - -9 = 14)

The bad news is that this is not true for muliplication, division and compares. Therefore, there are
special mul and div opcodes for signed numbers:

imul and idiv

Imul also has an advantages over mul because it can take immediate values:

imul src
imul src, immed
imul dest,src, 8-bit immed
imul dest,src

idiv src

They are about the same as mul and div, but they calculate with signed values. Compares can be
used the same as with unsigned numbers, but the flags are set different. Therefore there are different
jump instructions for signed and unsigned numbers:

cmp ax, bx
ja somewhere

Ja is an unsigned jump. Jump if above. Imagine that ax = FFFFh (FFFFh unsigned, -1 signed) and bx =
0005h (5 unsigned, 5 signed). As FFFFh is a higher (unsigned) value than 0005, the ja-instruction will
jump. But if the jg instruction is used (which is a signed jump):

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 24 / 53

cmp ax, bx
jg somewhere

The jg-instruction won't jump, because -1 is not greater that 5.

Just remember this:
A number is signed or unsigned depending on how you treat the number.

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 25 / 53

 Win32Asm Tutorial

prev 9- More opcodes next

9.0 - More opcodes

Here are some more opcodes

TEST

Test performs a logical AND operation on the two operands (dest, src) and sets the flag register
according to the result. The result itself is not stored. Test is used to test for a bit in for example a
register:

test eax, 100b ; (b-suffix stands for binary)
jnz bitset

The jnz will jump if the 3rd bit from the right in eax is set. A very common use of test is to test if a
register is zero:

test ecx, ecx
jz somewhere

The jz jumps if ecx is zero.

STACK OPCODES

Before I will tell you about the stack opcodes, I will first explain what the stack is. The stack is a
place in memory, pointed to by the stack pointer register, esp. The stack is a place to hold temporary
values. There are two instructions to put a value and get it again: push and pop. Push pushes a
value onto the stack, pop pops it off again. The value that was last put on the stack, goes first off. As
a value is placed on the stack, the stack pointer decreases, when it is removed, the stack pointer
increases. Look at this example:

(1) mov ecx, 100
(2) mov eax, 200
(3) push ecx ; save ecx
(4) push eax
(5) xor ecx, eax
(6) add ecx, 400
(7) mov edx, ecx
(8) pop ebx
(9) pop ecx

Explaination:

1: put 100 in ecx
2: put 200 in eax
3: push ecx (=100) onto the stack (first pushed)
4: push eax (=200) onto the stack (last pushed)
5/6/7: perform operation on ecx, value of ecx changes
8: pop ebx: ebx will become 200 (last pushed, first pop-ed)
9: pop ecx: ecx will become 100 again (first pushed, last pop-ed)

To indicate what happens in memory with this pushing and poping, look at the following figures:

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 26 / 53

Offset1203 1204 1205 1206 1207 1208 1209 120A120B
Value 00 00 00 00 00 00 00 00 00
 ESP

(the stack is here initialy filled with zeroes, but in reality it is not like this. ESP indicates the offset that
ESP points to)

mov ax, 4560h
push ax

Offset1203 1204 1205 1206 1207 1208 1209 120A120B
Value 00 00 60 45 00 00 00 00 00
 ESP

mov cx, FFFFh
push cx

Offset1203 1204 1205 1206 1207 1208 1209 120A120B
Value FF FF 60 45 00 00 00 00 00
 ESP

pop edx

Offset1203 1204 1205 1206 1207 1208 1209 120A120B
Value FF FF 60 45 00 00 00 00 00
 ESP

edx is 4560FFFFh now.

CALL & RET

A call jumps to some code and returns as soon as it found a ret-instruction. You can see them as
functions or subs in other programming languages. Example:

..code..
call 0455659
..more code..

Code at 455659:
add eax, 500
mul eax, edx
ret

When the call instruction is executed, the processor jumps to the code at 455659, executes the
instructions until the ret, and then returns to the instruction after the call. The code the call jumps to
is called a procedure. You can put code that you use many times into a procedure and then use a call
each time you need it.

More into details: A call pushes the EIP (pointer to the next instruction that has to be executed) on
the stack, and the ret-instruction pops it off again and returns. You can also specify arguments for a
call. This is done by pushes:

push something
push something2
call procedure

Inside the call, the arguments can be read from the stack and used. Local variables, i.e. data that is
only needed within the procedure, are also stored on the stack. I won't go into details about this,
because it can be done very easily with masm and tasm. Just remember you can make procedures,
and that they can use parameters. One important note:

eax is almost always used to hold the return value of a procedure

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 27 / 53

This is also true for windows functions. Of course you can use any other register in your own
procedure, but this is the standard.

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 28 / 53

 Win32Asm Tutorial

prev 10- The advantages of masm next

10.0 - The advantages of masm

If you are not using masm, you can skip this section and try to convert all the examples, or read it
anyway and try to persuade yourself using masm. Of course this is your own choice. But masm
makes assembly language really easier.

10.1 - Comparison and loop construction

Masm has some pseudo-high level syntax to create compare- and loopconstructions easily:

.IF, .ELSE, .ELSEIF, .ENDIF

.REPEAT, .UNTIL

.WHILE, .ENDW, .BREAK

.CONTINUE

If

If you have any experience with programming languages (you should), you probably have seen
something like an if/else construction:

.IF eax==1
;eax is one
.ELSEIF eax=3
; eax is three
.ELSE
; eax is not one or three
.ENDIF

This construction is VERY useful. You don't have to mess with jumps, just an .IF statement (don't
forget the period before .IF and .ELSE etc.). Nested if's are allowed:

.IF eax==1

.IF ecx!=2
; eax= 1 and ecx is not 2
.ENDIF
.ENDIF

But this can be done easier:

.IF (eax==1 && ecx!=2)
; eax = 1 and ecx is not 2
.ENDIF

These are the operators you can use:

== is equal to
!= is not equal to
> is greater than
< is less than
>= is greater than or equal to
<= is less than to equal to
& bit-test
! logical NOT
&& logical AND

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 29 / 53

|| logical OR
CARRY? carry bit set
OVERFLOW? overflow bit set
PARITY parity bit set
SIGN? sign bit set
ZERO? zero bit set

Repeat

This statement executes a block until a condition is true:

.REPEAT
; code here
.UNTIL eax==1

This code repeats the code between repeat and until, until eax = 1.

While

The while is the inverse of the repeat function. It executes a block while a condition is true:

.WHILE eax==1
; code here
.ENDW

You can use the .BREAK statement to 'break' out of the loop

.WHILE edx==1
inc eax
.IF eax==7
.BREAK
.ENDIF
.ENDW

If eax=7, the while-loop will stop.

The continue instruction makes the repeat or while-block skip to the code that evaluates the
condition of the loop.

10.2 - Invoke

This is the biggest advantage over tasm and nasm. Invoke simplifies the use of procedures and calls.

Normal style:

push parameter3
push parameter2
push parameter1
call procedure

Invoke style:

invoke procedure, parameter1, parameter2, parameter3

The assembled code is exactly the same, but the invoke style is easier and more reliable. To use
invoke on a procedure, you'll have to define a prototype:

PROTO STDCALL testproc:DWORD, :DWORD, :DWORD

This declares a procedure, named testproc, that takes 3 DWORD-size parameters. Now if you do
this...

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 30 / 53

invoke testproc, 1, 2, 3, 4

...masm will give you an error that the testproc procedure takes 3 parameters, not 4. Masm also has
type checking, i.e. it checks if the parameters have the right type (size).

In an invoke statement, you can use ADDR in stead of OFFSET. This will make an address in the
correct form when it's assembled.

Procedures are defined like this:

testproc PROTO STDCALL :DWORD, :DWORD, :DWORD

.code

testproc proc param1:DWORD, param2:DWORD, param3:DWORD

ret
testproc endp

This creates a procedure named testproc, with three parameters. The prototype is used by invoke
calls.

testproc PROTO STDCALL :DWORD, :DWORD, :DWORD

.code

testproc proc param1:DWORD, param2:DWORD, param3:DWORD

mov ecx, param1
mov edx, param2
mov eax, param3
add edx, eax
mul eax, ecx

ret
testproc endp

Now, the procedure does the following calculation. testproc(param1, param2, param3) = param1 *
(param2 + param3). The result, the return value, is stored in eax. Local variables are defined like this:

testproc proc param1:DWORD, param2:DWORD, param3:DWORD
LOCAL var1:DWORD
LOCAL var2:BYTE

mov ecx, param1
mov var2, cl
mov edx, param2
mov eax, param3
mov var1, eax
add edx, eax
mul eax, ecx
mov ebx, var1
.IF bl==var2
xor eax, eax
.ENDIF

ret
testproc endp

You can't use these variables outside the procedure. They are stored on the stack and removed when
the procedure returns.

10.3 - Macro's

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 31 / 53

Macro's will not be explained now. Maybe in a later tutorial, but right now they are not important to
us.

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 32 / 53

 Win32Asm Tutorial

prev 11- Basics of asm in win next

11.0 - Basics of assembly in windows

Now you have some basic knowledge about assembly language, you will learn how to use assembly
in windows.

11.1 - API

The fundamental of programming in windows lies in the windows API, Application Programming
Interface. This is a set of functies supplied by the operating system. Every windows program uses
these functions. These functions are in the system dll's like kernel, user, gdi, shell, advapi, etc. There
are two types of functions: ANSI and Unicode. This has to do with the way strings are stored. With
ansi, each byte represents a symbol (asci-code) and uses a 0-byte to indicate the end of a string (null-
terminated). Unicode uses the widechar format, which uses 2 bytes per symbol. This allowes the
usage of languages that need more characters like chinees. Widechar strings are terminated with 2 0-
bytes. Windows supports both types by using different function names for ansi and unicode. For
example:

MessageBoxA (A-suffix for ansi)
MessageBoxW (W-suffix for widechar (unicode))

We will only use the ansi type.

11.1 - importing dll's

In order to use the functions from the windows API, you need to import the dll's. This is done by
import libraries (.lib). These libraries are necessary because they allow the system (windows) to load
the dll dynamically, i.e. at dynamic base addresses in memory. In the win32asm package
(win32asm.cjb.net) libraries for most standard dll's are supplied. You can load a library with the
includelib statement of masm.

includelib C:\masm32\lib\kernel32.lib

This will load the library kernel32.lib. In the examples, this form is used:

includelib \masm32\lib\kernel32.lib

Now you will see why your assembly source files should be on the same drive as masm. Now you
can compile your program on an other computer without changing all the paths to the correct drive.

But an include library is not the only thing you need. An include file (.inc) is also needed. These can
be automatically generated from the libraries using the l2inc utiliy. An include file is loaded like this:

include \masm32\include\kernel32.inc

Inside the include file, the prototypes for the functions in the dll are defined, so you can use invoke.

kernel32.inc:
...
MessageBoxA proto stdcall :DWORD, :DWORD, :DWORD, :DWORD
MessageBox textequ <MessageBoxA>
...

You can see that the include file contains the ANSI functions and also defines the function names
withouth the 'A' to be the same as the real function name: you can use MessageBox in stead of
MessageBoxA. After you've included a library and an include file, you can use the function:

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 33 / 53

invoke MessageBox, NULL, ADDR MsgText, ADDR MsgTitle, NULL

11.2 - Windows include file

Then there's a special include file, called windows.inc most of the time, which contains all constants
and structures for the windows API. For example, a message box can have different styles. The
fourth parameter of the function is the style. NULL stands for MB_OK, which is just an OK button.
the windows include file contains definitions for these styles:

MB_OK equ 0
MB_OKCANCEL equ ...
MB_YESNO equ ...

So you can use these names as constants:

invoke MessageBox, NULL, ADDR MsgText, ADDR MsgTitle, MB_YESNO

The example will use the include file from the masm package:

include \masm32\include\windows.inc

11.3 - Frame

.486

.model flat, stdcall

option casemap:none

includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\user32.lib
includelib \masm32\lib\gdi32.lib

include \masm32\include\kernel32.inc
include \masm32\include\user32.inc
include \masm32\include\gdi32.inc
include \masm32\include\windows.inc

.data

blahblah

.code

start:

blahblah

end start

This is the basic frame for a windows assembly source file (.asm).

.486 Tells the assembler that it should generate opcodes for a 486 processor (or
higher). You can use .386, too but 486 works most of the time.

.model flat, stdcall

Use the flat memory model (discussed in one of the previous tutorials) and use
the stdcall calling conventenion. This means that parameters for the function are
pushed right to left (last parameter first pushed) and that the function should
correct the stack itself when finished. This is standard for almost all windows
api functions and dll's.

option
casemap:none

Controls the mapping of characters to uppercase. For the windows.inc file to
work properly, this should be 'none'.

includelib discussed above
include also discussed above

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 34 / 53

.data start of the data section (see previous tutorials)

.code start of the code section (see previous tutorials)

start:
end start

label that indicates the start of the program. Not that it doesn't need to be called
'start'. You can use any name for it as long as you indicate that it is a start label
using the 'end' statement:

startofprog:

end startofprog

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 35 / 53

 Win32Asm Tutorial

prev 12- First Program next

12.0 - First Program

It's time to create your first program. Instructions in this tutorial are formatted like this.

12.1 - Step 1

If all's okay, you should have a win32 (or win32asm) folder on your harddisk on the same drive as
masm. For each project, you should create a subdirectory.

Create a subdirectory called 'Firstprogram' in your win32 dir. Create a new textfile and rename it to
'first.asm'.

important: If you are using ultraedit, make sure you've installed my wordfile and switch on the
'functions' window (view, views/lists, function list). Finally, make sure you have set the tab stop
value to 4 spaces (Advanced, configuration, Edit tab)

12.2 - Step 2

Put the following code into first.asm:

.486

.model flat, stdcall

option casemap:none

includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\user32.lib

include \masm32\include\kernel32.inc
include \masm32\include\user32.inc
include \masm32\include\windows.inc

For now, the only two dll's we need are kernel32 and user32.

12.3 - Step 3

We are going to make the famous 'Hello world' program. To display the 'hello world' string we will
use a message box. A messagebox is created using the MessageBox function. You can look up this
function in the win32 programmer's reference (see tutor 2) . Here is what it says:

The MessageBox function creates, displays, and operates a message box. The message box contains
an application-defined message and title, plus any combination of predefined icons and push buttons.

int MessageBox(
HWND hWnd, // handle of owner window
LPCTSTR lpText, // address of text in message box
LPCTSTR lpCaption, // address of title of message box
UINT uType // style of message box
);

Parameters

hWnd Identifies the owner window of the message box to be created. If
this parameter is NULL, the message box has no owner window.

lpText Points to a null-terminated string containing the message to be
displayed.

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 36 / 53

lpCaption Points to a null-terminated string used for the dialog box title. If
this parameter is NULL, the default title Error is used.

uType
Specifies a set of bit flags that determine the contents and
behavior of the dialog box. This parameter can be a combination
of flags from the following groups of flags.

[--SNIP--]

After this text a whole list of constants and flags (which are defined in windows.inc) follows. I haven't
displayed it here because it is quite long. Looking at the reference, you can see that the MessageBox
function takes 4 parameters: A parent window, a pointer to a message string, a pointer to a title
string and the type of messagebox.

hWnd can be NULL, because our program does not have a window.
lpText has to be a pointer to our text. This just means that the parameter is the offset of the memory
location where our text is.
lpCaption is the offset of the title string.
uType is a combination of the values explained in the reference like MB_OK, MB_OKCANCEL,
MB_ICONERROR, etc.

Let's first define two strings for the messagebox:

add this to first.asm:

.data

MsgText db "Hello world!",0
MsgTitle db "This is a messagebox",0

.data indicates the start of the data section. With db bytes are directly inserted, and as a string is
just a collection of bytes, the data section will contain the strings above, 0-terminated by the
additional ,o. MsgText holds the offset of the first string, MsgTitle the offset of the second string.
Now we can use the function:

invoke MessageBox, NULL, offset MsgText, offset MsgTitle, NULL

But because invoke is used, you can use the (more safe) ADDR in stead of offset:

invoke MessageBox, NULL, ADDR MsgText, ADDR MsgTitle, NULL

We haven't looked at the last parameter yet, but this will work fine because MB_OK (style for a
messagebox with an OK button) equals 0 (NULL). But you can use any other style. The uType (4th
parameter) definiton is:

Specifies a set of bit flags that determine the contents and behavior of the dialog box. This parameter
can be a combination of flags from the following groups of flags.

Now take for example that we want a simple messagebox with an OK button with the 'information'-
icon. MB_OK is the style for the OK button, MB_ICONINFORMATION is the style for an information
icon. Styles are combined with the 'or' operator. This is not the or-opcode. Masm will perform the or
operation before assembling. In stead of or, you can use the + sign (addition), but sometimes this
gives problems with overlapping styles (one style containg some other style). But in this case you
could also have used a +.

.code

start:

invoke MessageBox, NULL, ADDR MsgText, ADDR MsgTitle, MB_OK +
MB_ICONINFORMATION

end start

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 37 / 53

Add the code above to your first.asm file

We've added a start label, too. If you would assemble your program now and run it, it would
display the messagebox and probably crash after you've clicked ok. This is because the program is
not ended, and the processor starts to execute whatever there is after the messagebox code.
Programs in windows are ended with ther ExitProcess function:

The ExitProcess function ends a process and all its threads.

VOID ExitProcess(

UINT uExitCode // exit code for all threads
);

We can use 0 as exit code:

Change your code to this:

.code

start:

invoke MessageBox, NULL, ADDR MsgText, ADDR MsgTitle, MB_OK +
MB_ICONINFORMATION
invoke ExitProcess, NULL

end start

12.4 - Step 4

So our final program is:

.486

.model flat, stdcall

option casemap:none

includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\user32.lib

include \masm32\include\kernel32.inc
include \masm32\include\user32.inc
include \masm32\include\windows.inc

.data
MsgText db "Hello world!",0
MsgTitle db "This is a messagebox",0

.code

start:
invoke MessageBox, NULL, ADDR MsgText, ADDR MsgTitle, MB_OK or
MB_ICONINFORMATION
invoke ExitProcess, NULL

end start

12.5 - Step 5

Now we will create an executable from this source code.

Create a new text file named make.bat with the following content:

@echo off

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 38 / 53

ml /c /coff first.asm
link /subsystem:windows first.obj
pause>nul

Explanation:

ml /c /coff first.asm

ml is the macro assembler (masm). Masm will create the raw code from
the program. The options mean:
/c = Assemble without linking. (because we use link.exe for this)
/coff = generate COFF format object file. This is the standard for a
windows executable.
first.asm = assemble the file first.asm

link /subsystem:windows
first.obj

The linker takes the object file and links it to all the imported dll's and
libraries. Options:
/subsystem:windows = Create an executable for windows.
first.obj = link first.obj

If you've done verything right and run the batch file, there will be a first.exe now. Run it to see the
results.

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 39 / 53

 Win32Asm Tutorial

 prev 13- Windows in windows next

12.0 - Windows in windows

In this tutorial, we will create a program with a window.

12.1 - Windows

You can probably guess why windows is called windows. In windows, there are two types of
programs: GUI applications and console applications. Console mode programs look like DOS
programs, they run in a DOS-like box. Most program's you use are GUI (graphical user interface)
applications. They have a graphical interface to interact with the user. This is done by creating
windows. Almost everything you see in windows is a window. First you create a parent window,
and then its client windows (controls) like edit boxes, static controls, buttons etc.

12.2 - Window Classes

Each window has a class name. For your parent window you define your own class. For controls,
you can use the standard windows class names (e.g. 'EDIT', 'STATIC', 'BUTTON').

12.3 - Structures

A window class in your program is registered by using the 'RegisterClassEx' function
(RegisterClassEx is the extended version of RegisterClass, which is not being used much). The
declaration of this function is:

ATOM RegisterClassEx(

CONST WNDCLASSEX *lpwcx // address of structure with class data
);

lpwcx: Points to a WNDCLASSEX structure. You must fill the structure with
the appropriate class attributes before passing it to the function.

The only parameter is a pointer to a structure. First some basics about structures:

A structure is a collection of variables (data). It is defined with STRUCT:

SOMESTRUCTURE STRUCT
dword1 dd ?
dword2 dd ?
some_word dw ?
abyte db ?
anotherbyte db ?
SOMESTRUCTURE ENDS

(the structure name doesn't have to be in capitals)

You can declare your variables just like in the uninitialized data section, with question marks. Now
you can create a structure from the definition:

Initialized

Initializedstructure SOMESTRUCTURE <100,200,10,'A',90h>

Uninitialized

UnInitializedstructure SOMESTRUCTURE <>

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 40 / 53

In the first example, a new structure is created (with Initializedstructure holding its offset),
and each data element of the structure is filled with an initial value. The second example just tells
masm to reserve memory for the structure, and each data element is set to 0 initially. After creating a
structure you can access it in your code:

mov eax, Initializedstructure.some_word
; eax will hold 10 now
inc UnInitializedstructure.dword1
; the dword1 of the structure is increased by one

This is how this structure would be stored in memory

Memory location Contents
offset of Initializedstructure 100 (dword, 4 bytes)
offset of Initializedstructure + 4 200 (dword, 4 bytes)
offset of Initializedstructure + 8 10 (word, 2 bytes)
offset of Initializedstructure + 1065 or 'A' (1 byte)
offset of Initializedstructure + 1190h (1 byte)

12.3 - WNDCLASSEX

Enough about structures for now, let's proceed with RegisterClassEx. In the win32 programmer's
reference you can look up the defintion of the WNDCLASSEX structure.

typedef struct _WNDCLASSEX { // wc
UINT cbSize;
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HANDLE hInstance;
HICON hIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCTSTR lpszMenuName;
LPCTSTR lpszClassName;
HICON hIconSm;
} WNDCLASSEX;

Explanation:

cbSize Size of the WNDCLASSEX structure. Used for validation by windows. You can get
this size using SIZEOF: mov ws.cbSize, SIZEOF WNDCLASSEX

style Specifies the styles for the class (redraw flags, if the window should have a
scrollbar etc.)

lpfnWndProc Pointer to a window procedure (more on this later)

cbClsExtra Number of extra bytes to allocate following the window class structure. Not
important to us.

cbWndExtra Number of extra bytes to allocate following the window instance. Also not
important to us.

hInstance Instance handle of your program. You can get this handle with the
GetModuleHandle function.

hIcon Handle of an icon resource for the window.
hCursor Handle of a cursor resource for the window.

hbrBackground Handle to a brush for painting the background, or one of the standard brush types
like COLOR_WINDOW, COLOR_BTNFACE , COLOR_BACKGROUND.

lpszMenuName Pointer to a null-terminated string that specifies resource name of the class menu.
This can also be a resource ID.

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 41 / 53

lpszClassName Points to a null-terminated string that specifies the class name for the window.
hIconSm Handle to a small icon that is associated with the window class.

Create a new folder in your win32 folder called firstwindow and create a new file window.asm in this folder
with the following contents:

.486

.model flat, stdcall
option casemap:none

includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\user32.lib
includelib \masm32\lib\gdi32.lib
include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
include \masm32\include\user32.inc
include \masm32\include\gdi32.inc

Then create a .bat file called make.bat. Paste this text into it:

@echo off
ml /c /coff window.asm
link /subsystem:windows window.obj
pause>nul

<view code>

From now on, to save space, only pieces of the full code are displayed, you can click on <view
code> to display the full code at that point in the tutorial. The full code is displayed in a new

window.

12.4 - Registering a class

Now we will register the class in a procedure called WinMain. This procedure contains the window
initialization.

add this to your assembly file:

WinMain PROTO STDCALL :DWORD, :DWORD, :DWORD

.data?

hInstance dd ?

.code

invoke GetModuleHandle, NULL
mov hInstance, eax
invoke WinMain, hInstance, NULL, NULL, SW_SHOWNORMAL

end start

This code will get the handle of the module with getmodulehandle, put the handle in the hInstance
variable. This module handle is used very often in the windows API. Then it calls the procedure
WinMain. This is not an API function, but a procedure we will define now. The prototype is :
WinMain PROTO STDCALL :DWORD, :DWORD, :DWORD, :DWORD, so a function with 4
parameters.:

<view code>

Now put this code before the end start:

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 42 / 53

WinMain proc hInst:DWORD, hPrevInst:DWORD, CmdLine:DWORD, CmdShow:DWORD

ret
WinMain endp

You don't have to use this winmain procedure at all, but it's a very common way of initializing your
program. Visual C initializes the parameters of this functions automatically, but we have to do it
ourselves. Don't care about hPrevInst and CmdLine for now, focus on hInst and CmdShow. hInst is
the Instance handle (= module handle), CmdShow is a flag that defines how the window should be
shown. (More on this can be found in the API reference about ShowWindow).

The "invoke WinMain, hInstance, NULL, NULL, SW_SHOWNORMAL" in the previous code calls this
function with the right hInstance and show flag. Now we can write our initialization code in
WinMain:

WinMain proc hInst:DWORD, hPrevInst:DWORD, CmdLine:DWORD, CmdShow:DWORD
LOCAL wc:WNDCLASSEX
LOCAL hwnd:DWORD

ret
WinMain endp

These are the two local variables we will need in this procedure.

.data

ClassName db "FirstWindowClass",0

.code

WinMain proc hInst:DWORD, hPrevInst:DWORD, CmdLine:DWORD, CmdShow:DWORD
LOCAL wc:WNDCLASSEX
LOCAL hwnd:DWORD
; now set all the structure members of the WNDCLASSEX structure wc:
mov wc.cbSize,SIZEOF WNDCLASSEX
mov wc.style, CS_HREDRAW or CS_VREDRAW
mov wc.lpfnWndProc, OFFSET WndProc
mov wc.cbClsExtra,NULL
mov wc.cbWndExtra,NULL
push hInst
pop wc.hInstance
mov wc.hbrBackground,COLOR_WINDOW
mov wc.lpszMenuName,NULL
mov wc.lpszClassName,OFFSET ClassName
invoke LoadIcon,NULL,IDI_APPLICATION
mov wc.hIcon, eax
mov wc.hIconSm, eax
invoke LoadCursor,NULL,IDC_ARROW
mov wc.hCursor,eax
invoke RegisterClassEx, ADDR wc

ret
WinMain endp

Let's see what happens:

mov wc.cbSize,SIZEOF WNDCLASSEX
mov wc.style, CS_HREDRAW or CS_VREDRAW
mov wc.lpfnWndProc, OFFSET WndProc
mov wc.cbClsExtra,NULL
mov wc.cbWndExtra,NULL

The size of the structure is initialized (this is required by RegisterClassEx). The style of the class is set

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 43 / 53

to "CS_HREDRAW or CS_VREDRAW", then the offset of the windows procedure is set. You will
find out what the window procedure is later, for now remember that you need the address of the
WndProc procedure, which you can get with 'offset WndProc'. cbClsExtra and cbWndExtra are not
used by us so set them to NULL.

push hInst
pop wc.hInstance

The wc.hInstance is set to the hInst parameter of WinMain. Why don't we use: mov
wc.hInstance, hInst? Because the mov instruction does not allow to move from one memory
location to another. With the push/pop method, the value to move is pushed on stack, and than
popped of into the destination.

mov wc.hbrBackground, COLOR_WINDOW
mov wc.lpszMenuName, NULL
mov wc.lpszClassName, OFFSET ClassName

The background color of the class is set to COLOR_WINDOW, no menu is defined (NULL), and the
lpszClassName is set to a pointer to the null-terminated classname-string: "FirstWindowClass". This
should be a unique name defined for your own application.

invoke LoadIcon, NULL, IDI_APPLICATION
mov wc.hIcon, eax
mov wc.hIconSm, eax

The window needs an icon, but because we need a handle to an icon, we use LoadIcon to load an
icon and get a handle. LoadIcon has two parameters: hInstance, and lpIconName. hInstance is the
module handle whose executable file contains the icon. lpIconName is a pointer to a string that is the
name of the icon resource or a resource ID. If you use NULL as hInstance, you can choose from some
standard icons. (Which we do because we don't have an icon resource here). hIconSm is the small
icon, you can use the same handle for it.

invoke LoadCursor,NULL,IDC_ARROW
mov wc.hCursor,eax

Same thing for the cursor, just NULL as hInstance, and a standard cursor type: IDC_ARROW, the
standard windows arrow.

invoke RegisterClassEx, ADDR wc

Now finally register the class using RegisterClassEx with a pointer to the WNDCLASSEX structure
wc as parameter.

<view code>

12.5 - Creating the window

Now you've registered a class you can create a window from it:

HWND CreateWindowEx(

DWORD dwExStyle, // extended window style
LPCTSTR lpClassName, // pointer to registered class name
LPCTSTR lpWindowName, // pointer to window name
DWORD dwStyle, // window style
int x, // horizontal position of window
int y, // vertical position of window
int nWidth, // window width
int nHeight, // window height
HWND hWndParent, // handle to parent or owner window
HMENU hMenu, // handle to menu, or child-window identifier
HINSTANCE hInstance, // handle to application instance
LPVOID lpParam // pointer to window-creation data

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 44 / 53

);

dwExStyle and dwStyle are two parameters which determine the style of the window.
lpClassName is a pointer to your registered classname.
lpWindowName is the name of your window (this will be in the caption of your window if it has
one)
x, y, nWidth, nHeight determine the position and size of your window.
hWndParent is the handle of the window that owns the new window. Can be null if you don't have a
parent window.
hMenu is a handle of a windows menu (discussed in a later tutorial, null for now)
hInstance is the application instance handle
lpParam is an extra value you can use in your program

.data

AppName "FirstWindow",0

.code

INVOKE CreateWindowEx,NULL,ADDR ClassName,ADDR AppName,\
WS_OVERLAPPEDWINDOW,CW_USEDEFAULT,\
CW_USEDEFAULT,400,300,NULL,NULL,\
hInst,NULL
mov hwnd, eax
invoke ShowWindow, hwnd, SW_SHOWNORMAL
invoke UpdateWindow, hwnd

(note that the \-character makes the assembler read to the next line as if it where on the same line.)

Our code will create a new windows, with our classname we've just registered. The title will be
"FirstWindow" (AppName), the style is WS_OVERLAPPEDWINDOW, which is a style that creates
an overlapped window with a caption, system menu, resizable border and a minimize/maximize-
box. CW_USEDEFAULT as x and y position will make windows use the default position for the new
window. The (initial) size of the window is 400x300 pixels.

The return value of the function is the window handle, HWND, which is stored in the local variable
hwnd. Then the window is showed with ShowWindow. UpdateWindow ensures that the window
will be drawn.

12.6 - Message Loop

A window can communicate with your program and other windows using messages. The window
procedure (see later on in this tutorial) is called whenever a message is pending for a specific
window. Each window has a message loop or message pump. This is an endless loop that checks if
there's a message for your window, and if it is, passes the message to the dispatchmessage function.
This function will call your window procedure. The message loop and the windows procedure are
two different things!!!

WinMain proc
hInst:HINSTANCE,hPrevInst:HINSTANCE,CmdLine:LPSTR,CmdShow:DWORD
LOCAL wc:WNDCLASSEX
LOCAL hwnd:DWORD
LOCAL msg:MSG ;<<<NEW

........

.WHILE TRUE
invoke GetMessage, ADDR msg,NULL,0,0
.BREAK .IF (!eax)
invoke TranslateMessage, ADDR msg
invoke DispatchMessage, ADDR msg
.ENDW

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 45 / 53

This is what the message loop looks like. The .WHILE TRUE, .ENDW loop goes on until eax is 0.
GetMessage returns 0 if it receives the message WM_QUIT, which should close the window so the
program must exit the messageloop whenever GetMessage returns 0. If it doesn't, the message is
passed to TranslateMessage (this function translates keypresses to messages) and then the message
is dispatched by windows using the DispatchMessage function. The message itself in a message loop
consists of a MSG structure (LOCAL msg:MSG is added to the procedure, which adds a local
message structure called msg). You can use this message loop in all your programs.

12.7 - Window Procedure

Messages will be send to the window procedure. A window procedure should always look like this:

WndProc PROTO STDCALL :DWORD, :DWORD, :DWORD, :DWORD

.code

WndProc proc hWnd:DWORD, uMsg:DWORD, wParam:DWORD, lParam:DWORD
mov eax, uMsg
.IF eax==XXXX
.ELSEIF eax==XXXX
.ELSE
 invoke DefWindowProc, hWnd, uMsg, wParam, lParam
.ENDIF
ret
WndProc endp

The window procedure should always have 4 parameters:

hWnd contains the window handle.
uMsg is the message
wParam is the first parameter for the message (message specific)
lParam is the second parameter for the message (message specific)

Messages that the window does not process should be passed to DefWindowProc, which takes care
of the processing. An example window procedure:

WndProc proc hWnd:DWORD, uMsg:DWORD, wParam:DWORD, lParam:DWORD
mov eax, uMsg
.IF eax==WM_CREATE
 invoke MessageBox, NULL, ADDR AppName, ADDR AppName, NULL
.ELSEIF eax==WM_DESTROY
 invoke PostQuitMessage, NULL
.ELSE
 invoke DefWindowProc, hWnd, uMsg, wParam, lParam
.ENDIF
ret
WndProc endp

This code displays the name of the application when the window is initialized. Also note that I've
added the processing of the WM_DESTROY message. This message is sent if the window should
close. The application should react to it with a PostQuitMessage.

Now take a look at the final code:

<view code>

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 46 / 53

 Win32Asm Tutorial

prev 14- N/A

14.0 - N/A

Sorry, this tutorial is not available yet. This tutorial is still under construction. Please check again
later!

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 47 / 53

 Win32Asm Tutorial

prev Tools next

Tools

This section describes the use of various tools. Please select a tool:

Assembler Masm

Linker Link

Resource compiler
brc32
rc

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 48 / 53

 Win32Asm Tutorial

prev Tools\Masm next

Masm

Masm is the assembler I use. Others are tasm and nasm but I prefer masm myself (see why). The use
of tasm and nasm (and other assemblers) is not discussed here.

Usage

Masm is ml.exe. The version I use is "Macro Assembler Version 6.14.8444". Syntax:

ML [/options] filelist [/link linkoptions]

Here are some important options:

/c
assemble without linking
You will use this option most of the time as you will be using
an external linker like link.exe to link your files.

/coff generate COFF format object file
This is the generic file format for the microsoft linker.

/Fo<file>
name object file
Can be used if you want to output an object file with an other
name than your source file

/G<c|d|z> Use Pascal, C, or Stdcall calls
Select the default calling convention for your procedures.

/Zi Add symbolic debug info
Use this option if you want to use a debugger.

/I<name> Set include path
Defines your default include path

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 49 / 53

 Win32Asm Tutorial

prev Tools\Link next

Link

Link is the standard linker of microsoft.

Usage

Link is link.exe. The version I use is "Incremental Linker Version 5.12.8078". Syntax:

LINK [options] [files] [@commandfile]

Here are some important options:

/DEBUG
Debug
This will create debug information. Use this option when
you want to use a debugger.

/DEBUGTYPE:CV|COFF

Debugtype: codeview / coff
Selects the output format of the debug info. This depends
on your debugger. Softice and the visual c++ debugger
both can handle CV (codeview)

/DEF:filename
DEF file
Specifies the definition file (.def). Used with dll's to
export functions.

/DLL DLL
Outputs a dynamic link library instead of an executable.

/LIBPATH:path Libpath
Specifies the path of your library files (*.lib).

/I<name> Set include path
Defines your default include path.

/OUT:filename Out:filename
Can override the default output filename.

/SUBSYSTEM:{...}
Subsystem
Selects the OS the program should run on:
NATIVE|WINDOWS|CONSOLE|WINDOWSCE|POSIX

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 50 / 53

 Win32Asm Tutorial

prev Tools\brc32 next

BRC32

This is a resource compiler for borland resource files. If you create your resources with borland
resource workshop, it is best tot use this compiler as it is fully compatible with brw.

Usage

The version I use is 5.00. Syntax:

BRC32 [options ...] filename

Here are some important options:

-r

Compile only. Do not bind resources
If this option is NOT set, brc32 will link the compiled resource
file to your executable. If it is set, it will output a .res file
(compiled resource), which you can manually link with link.exe. I
always use this option.

-
fofilename

Set output res filename
Output file for .res file.

-
fefilename

Set output exe filename
Output file for .exe file.

Remarks

I always use brc32 for my resource files because I create them with borland resource workshop. I
prefer using link.exe to link the resource to the executable, so my compiling process is as follows:

brc32 -r resourcefile.rc
link ..otheroptions... myprogram.obj resourcefile.res

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 51 / 53

 Win32Asm Tutorial

prev Tools\rc next

RC

RC.exe is the resource compiler from microsoft. I don't use it myself, but here is some information
about it.

Usage

The version I use is 5.00.1823.1 - Build 1823. Syntax:

rc [options] .RC input file

Here are some important options:

-fo Rename .res file
Output file for .res file.

[top]

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 52 / 53

 Atop CHM to PDF Converter

Purchase Atop CHM to PDF Converter

Atop CHM to PDF Converter is distributed as "Shareware". This means the software is try before you buy
software, the trial version includes some limitation, if you would like to use it in full version, you have to
register your copy.

Online Order

Please Visit http://www.chmconverter.com/order.htm to order online.

Price for Registration Atop CHM to PDF Converter via the Web:
Single User License Unit Price:(US$29.95)

If you have any question or meet any problem on ordering, please contact us via
support@chmconverter.com . We will try to help you as quickly as possible.

 Note: For more information about upgrading to take full advantage of all the features describe, please
visit www.chmconverter.com.

 © 2011 Atop system. All Rights Reserved

Win32Asm Tutorial Converted by Atop CHM to PDF Converter free version!

http://www.chmconverter.com 53 / 53

